• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 11
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 13
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Equations aux dérivées fractionnaires : propriétés et applications / Fractional differential equations : properties and applications

Hnaien, Dorsaf 21 September 2015 (has links)
Notre objectif dans cette thèse est l'étude des équations différentielles non linéaires comportant des dérivées fractionnaires en temps et/ou en espace. Nous nous sommes intéressés dans un premier temps à l'étude de deux systèmes non linéaires d'équations différentielles fractionnaires en temps et/ou en espace, puis à l'étude d'une équation différentielle fractionnaire en temps. Plus exactement pour la première partie, les questions concernant l'existence globale et le comportement asymptotique des solutions d'un système non linéaire d'équations différentielles comportant des dérivées fractionnaires en temps et en espace sont élucidées. Les techniques utilisées reposent sur des estimations obtenues pour les solutions fondamentales et la comparaison de certaines inégalités fractionnaires. Toujours dans la première partie, l'étude d'un système non linéaire d'équations de réaction-diffusion avec des dérivées fractionnaires en espace est abordée. L'existence locale et l'unicité des solutions sont prouvées à l'aide du théorème du point fixe de Banach. Nous montrons que les solutions sont bornées et analysons leur comportement à l'infini. La deuxième partie est consacrée à l'étude d'une équation différentielle fractionnaire non linéaire. Sous certaines conditions sur la donnée initiale, nous montrons que la solution est globale alors que sous d'autres, elle explose en temps fini. Dans ce dernier cas, nous donnons son profil ainsi que des estimations bilatérales du temps d'explosion. Alors que pour la solution globale nous étudions son comportement asymptotique. / Our objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior.
22

Estimation de la vitesse de retour à l'équilibre dans les équations de Fokker-Planck / Estimation of the rate of return to equilibrium in Fokker-Planck's equations

Ndao, Mamadou 18 July 2018 (has links)
Ce mémoire de thèse est consacré à l’équation de Fokker-Planckpartial_ f=∆f+div(Ef).Il est subdivisé en deux parties :une partie linéaire et une partie non linéaire. Dans la partie linéaire on considère un champ de vecteur E(x) dépendant seulement de x. Cette partie est constituée des chapitres 3, 4 et 5. Dans le chapitre 3 on montre que l’opérateur linéaire Lf :=∆ f + div(E f ) est le générateur d’un semi-groupe fortement continu (SL(t))_{t≥0} dans tous les espaces L^p. On y établit également que le semi-groupe (SL(t))_{t≥0} est positif et ultracontractif. Dans le chapitre 4 nous montrons comment est qu’une décomposition adéquate de l’opérateur L permet d’établir certaines propriétés du semi-groupe (SL(t))_{t≥0} notamment sa bornitude. Le chapitre 5 est consacré à l’existence d’un état d’équilibre. De plus on y montre que cet état d’équi- libre est asymptotiquement stable. Dans la partie non linéaire on considère un champ de vecteur de la forme E(x,f) := x+nabla (a*f) ou a et f sont des fonctions assez régulières et * est l’opérateur de convolution. Cette parties est contituée des chapitre 6 et 7. Dans le chapitre 6 nous établissons que poura appartenant à W^{2,infini}_locl’équation de Fokker-Planck non linéaire admet une unique solution locale dans l’espace L^2_{K_alpha} (R^d). Dans le dernier chapitre nous montrons que le problème non linéaire admet une solution globale. De plus cette solution dépend continument des données. / This thesis is devoted to the Fokker-Planck équation partial_t f =∆f + div(E f).It is divided into two parts. The rst part deals with the linear problem. In this part we consider a vector E(x) depending only on x. It is composed of chapters 3, 4 and 5. In chapter 3 we prove that the linear operator Lf :=∆f + div(Ef ) is an in nitesimal generator of a strong continuous semigroup (SL(t))_{t≥0}. We establish also that (SL(t))_{t≥0} is positive and ultracontractive. In chapter 4 we show how an adequate decomposition of the linear operator L allows us to deduce interesting properties for the semigroup (SL(t))_{t≥0}. Indeed using this decomposition we prove that (SL(t))_{t≥0} is a bounded semigroup. In the last chapter of this part we establish that the linear Fokker-Planck admits a unique steady state. Moreover this stationary solution is asymptotically stable.In the nonlinear part we consider a vector eld of the form E(x, f ) := x +nabla (a *f ), where a and f are regular functions. It is composed of two chapters. In chapter 6 we establish that fora in W^{2,infini}_locthe nonlinear problem has a unique local solution in L^2_{K_alpha}(R^d); . To end this part we prove in chapter 7 that the nonlinear problem has a unique global solution in L^2_k(R^d). This solution depends continuously on the data.

Page generated in 0.0525 seconds