11 |
Low-cost GPS/GLONASS Precise Positioning algorithm in Constrained Environment / Algorithme de positionnement précis en environnement contraint basé sur un récepteur bas-coût GPS/GLONASSCarcanague, Sébastien 26 February 2013 (has links)
Le GNSS (Global Navigation Satellite System), et en particulier sa composante actuelle le système américain GPS et le système russe GLONASS, sont aujourd'hui utilisés pour des applications géodésiques afin d'obtenir un positionnement précis, de l'ordre du centimètre. Cela nécessite un certain nombre de traitements complexes, des équipements coûteux et éventuellement des compléments au sol des systèmes GPS et GLONASS. Ces applications sont aujourd'hui principalement réalisées en environnement « ouvert » et ne peuvent fonctionner en environnement plus contraint. L'augmentation croissante de l'utilisation du GNSS dans des domaines variés va voir émerger de nombreuses applications où le positionnement précis sera requis (par exemple des applications de transport/guidage automatique ou d'aide à la conduite nécessitant des performances importantes en terme de précision mais aussi en terme de confiance dans la position –l'intégrité- et de robustesse et disponibilité). D'autre part, l'arrivée sur le marché de récepteurs bas-coûts (inférieur à 100 euros) capables de poursuivre les signaux provenant de plusieurs constellations et d'en délivrer les mesures brutes laisse entrevoir des avancées importantes en termes de performance et de démocratisation de ces techniques de positionnement précis. Dans le cadre d'un utilisateur routier, l'un des enjeux du positionnement précis pour les années à venir est ainsi d'assurer sa disponibilité en tout terrain, c'est-à-dire dans le plus grand nombre d'environnements possibles, dont les environnements dégradés (végétation dense, environnement urbain, etc.) Dans ce contexte, l'objectif de la thèse a été d'élaborer et d'optimiser des algorithmes de positionnement précis (typiquement basés sur la poursuite de la phase de porteuse des signaux GNSS) afin de prendre en compte les contraintes liées à l'utilisation d'un récepteur bas coût et à l'environnement. En particulier, un logiciel de positionnement précis (RTK) capable de résoudre les ambiguïtés des mesures de phase GPS et GLONASS a été développé. La structure particulière des signaux GLONASS (FDMA) requiert notamment un traitement spécifiques des mesures de phase décrit dans la thèse afin de pouvoir isoler les ambiguïtés de phase en tant qu'entiers. Ce traitement est compliqué par l'utilisation de mesures provenant d'un récepteur bas coût dont les canaux GLONASS ne sont pas calibrés. L'utilisation d'une méthode de calibration des mesures de code et de phase décrite dans la thèse permet de réduire les biais affectant les différentes mesures GLONASS. Il est ainsi démontré que la résolution entière des ambiguïtés de phase GLONASS est possible avec un récepteur bas coût après calibration de celui-ci. La faible qualité des mesures, du fait de l'utilisation d'un récepteur bas coût en milieu dégradé est prise en compte dans le logiciel de positionnement précis en adoptant une pondération des mesures spécifique et des paramètres de validation de l'ambiguïté dépendant de l'environnement. Enfin, une méthode de résolution des sauts de cycle innovante est présentée dans la thèse, afin d'améliorer la continuité de l'estimation des ambiguïtés de phase. Les résultats de 2 campagnes de mesures effectuées sur le périphérique Toulousain et dans le centre-ville de Toulouse ont montré une précision de 1.5m 68% du temps et de 3.5m 95% du temps dans un environnement de type urbain. En milieu semi-urbain type périphérique, cette précision atteint 10cm 68% du temps et 75cm 95% du temps. Finalement, cette thèse démontre la faisabilité d'un système de positionnement précis bas-coût pour un utilisateur routier. / GNSS and particularly GPS and GLONASS systems are currently used in some geodetic applications to obtain a centimeter-level precise position. Such a level of accuracy is obtained by performing complex processing on expensive high-end receivers and antennas, and by using precise corrections. Moreover, these applications are typically performed in clear-sky environments and cannot be applied in constrained environments. The constant improvement in GNSS availability and accuracy should allow the development of various applications in which precise positioning is required, such as automatic people transportation or advanced driver assistance systems. Moreover, the recent release on the market of low-cost receivers capable of delivering raw data from multiple constellations gives a glimpse of the potential improvement and the collapse in prices of precise positioning techniques. However, one of the challenge of road user precise positioning techniques is their availability in all types of environments potentially encountered, notably constrained environments (dense tree canopy, urban environments…). This difficulty is amplified by the use of low-cost receivers and antennas, which potentially deliver lower quality measurements. In this context the goal of this PhD study was to develop a precise positioning algorithm based on code, Doppler and carrier phase measurements from a low-cost receiver, potentially in a constrained environment. In particular, a precise positioning software based on RTK algorithm is described in this PhD study. It is demonstrated that GPS and GLONASS measurements from a low-cost receivers can be used to estimate carrier phase ambiguities as integers. The lower quality of measurements is handled by appropriately weighting and masking measurements, as well as performing an efficient outlier exclusion technique. Finally, an innovative cycle slip resolution technique is proposed. Two measurements campaigns were performed to assess the performance of the proposed algorithm. A horizontal position error 95th percentile of less than 70 centimeters is reached in a beltway environment in both campaigns, whereas a 95th percentile of less than 3.5 meters is reached in urban environment. Therefore, this study demonstrates the possibility of precisely estimating the position of a road user using low-cost hardware.
|
12 |
Satellitengestützte Fahrzeuglokalisierung in urbanen Gebieten mit GPS und GLONASSReisdorf, Pierre 03 July 2012 (has links)
Navigationssysteme sollen nach Möglichkeit an jedem Ort und zu jeder Zeit funktionieren. Satellitennavigationssysteme unterliegen jedoch gewissen äußerlichen Einschränkungen, die die Positionierung erschweren oder erheblich verschlechtern. In einem urbanen Gebiet sind die Einflüsse auf die Positionierung mit Satellitensystemen durch die eingeschränkten räumlichen Verhältnisse besonders groß. Sowohl Mehrwege-Effekte wie auch die Verkleinerung des Sichtbereiches zu den Satelliten treten deutlich mehr auf. Mit der Verwendung von mehreren Satellitensystemen soll versucht werden, die Positionierung im urbanen Gebiet zu verbessern oder überhaupt erst möglich zu machen. Zur Untersuchung werden dafür die Eigenschaften Verfügbarkeit, Genauigkeit und Integrität für GPS, für GLONASS und für beide Systeme als ein Gesamtsystem genauer betrachtet.
|
13 |
Quality control for integrated GNSS and inertial navigation systemsHewitson, Steve, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2006 (has links)
The availability of GPS signals is a major limitation for many existing and potential applications. Fortunately, with the development of Galileo by the European Commission (EC) and European Space Agency (ESA) and new funding for the restoration of the Russian GLONASS announced by the Russian Federation the future for satellite based positioning and navigation applications is extremely promising. This research primarily investigates the benefits of GNSS interoperability and GNSS/INS integration to Receiver Autonomous Integrity Monitoring (RAIM) from a geometrical perspective. In addition to these investigations, issues regarding multiple outlier detection and identification are examined and integrity procedures addressing these issues are proposed. Moreover, it has been shown how the same RAIM algorithms can be effectively applied to the various static and kinematic navigation architectures used in this research.
|
14 |
Análise da integração GPS/GLONASS para posicionamento sob efeito de cintilação ionosférica / Analysis of GPS/GLONASS integration for positioning under ionospheric scintillation effectJerez, Gabriel Oliveira [UNESP] 17 March 2017 (has links)
Submitted by Gabriel Oliveira Jerez null (gabrielojerez@gmail.com) on 2017-04-14T21:10:24Z
No. of bitstreams: 1
Dissertação_Gabriel.pdf: 58918950 bytes, checksum: c672d2677b4cddee82e8492deec6b6f9 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-04-18T14:47:18Z (GMT) No. of bitstreams: 1
jerez_go_me_prud.pdf: 58918950 bytes, checksum: c672d2677b4cddee82e8492deec6b6f9 (MD5) / Made available in DSpace on 2017-04-18T14:47:18Z (GMT). No. of bitstreams: 1
jerez_go_me_prud.pdf: 58918950 bytes, checksum: c672d2677b4cddee82e8492deec6b6f9 (MD5)
Previous issue date: 2017-03-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Com o desenvolvimento dos sistemas globais de navegação por satélite as atividades que envolvem posicionamento passaram por uma revolução. Os pioneiros, GLONASS (GLObal NAvigation Satellite System) e GPS (Global Positioning System), são atualmente os principais sistemas, e únicos com constelação completa. A utilização combinada de dados GPS e GLONASS passou por uma perda de interesse no final da década de noventa devido à rápida degradação que o GLONASS sofreu. Porém, em 2001 teve início um plano de restabelecimento do sistema que em 2011 voltou a contar com constelação completa de 24 satélites e cobertura global. O GLONASS passa ainda por um processo de modernização, com novas gerações de satélites sendo desenvolvidas, refinamentos dos sistemas de tempo e referência e novas estações de controle sendo instaladas. Além do uso de dados combinados, outros fatores que influenciam a qualidade do posicionamento são os métodos empregados e os erros aos quais os sinais transmitidos estão sujeitos. Nas metodologias de integração devem constar as diferenças de estrutura dos sistemas, sendo as principais, para este caso, os sistemas de referência, sistemas de tempo e a tecnologia relacionada às frequências. Em relação aos erros, a ionosfera é uma importante fonte, principalmente para usuários de receptores de apenas uma frequência. Ela exige atenção especial, pois além de degradar a acurácia do posicionamento há uma grande dependência entre perdas do sinal e irregularidades ionosféricas, como a cintilação ionosférica. Na presente pesquisa buscou-se analisar as melhorias apresentadas no posicionamento utilizando dados combinados GPS/GLONASS sob efeito de cintilação ionosférica, avaliar a influência da cintilação nos sinais GLONASS e realizar um estudo da estrutura do sistema. Foram realizados três experimentos, relacionados à aplicação do PPP (Posicionamento por Ponto Preciso), do posicionamento relativo estático e do posicionamento em redes (especificamente no conceito de VRS – Virtual Reference Station). Para possibilitar o posicionamento em redes foi adaptada a ferramenta VRS-UNESP, para permitir a geração de bases virtuais com dados GLONASS ou GPS/GLONASS. Para as três metodologias foram selecionadas estações em três regiões do Brasil com comportamentos ionosféricos distintos visando possibilitar também a análise do efeito da cintilação. Para isso foram escolhidas regiões próximas ao equador geomagnético, próximas a área afetada pelo efeito fonte e ao sul do país, onde se tem menor influência da ionosfera. Para o PPP considerando-se todos os casos, independente da configuração, houve melhoria em 92,28% dos dias com o uso de dados GPS e GLONASS. Para o posicionamento relativo os resultados obtidos foram mais irregulares que para o PPP, sendo que a melhoria ocorreu em 69,18% dos casos. Os dados virtuais foram processados de maneira análoga ao experimento com PPP, obtendo melhoria em 100% os casos analisados ao se utilizar dados GPS e GLONASS. / With the development of the Global Navigation Satellite Systems (GNSS) the activities involving positioning passed by a great revolution. Currently, the pioneers, GLONASS (GLObal NAvigation Satellite System) and GPS (Global Positioning System), are the main systems with full constellation. The interest in the combined use of GPS and GLONASS data had a great fall in the late nineties due to the fast degradation of GLONASS. However, in 2001 a restoration plan of the system began and in 2011 GLONASS recovered the full constellation of 24 satellites with global coverage. Furthermore GLONASS is going through a modernization process, with the development of new satellite generations, time and reference systems refinements and new control stations. Besides the use of combined data, other factors that influence the positioning quality are the applied methods and the errors that can affect the transmitted signals. The integration methodologies must consider the differences in the systems structures, the main differences, for this case, are reference and time systems and the technology related to the frequencies. About the errors, the ionosphere is an important source, mainly for users of single frequency receivers. It requires special attention, because besides of degrading the positioning accuracy there is a great dependency between the loss of signal and ionospheric irregularities, as ionospheric scintillation. In this research it was intended to analyze the improvement of the combined use of GPS/GLONASS data at positioning under ionospheric scintillation effect, evaluate the influence of scintillation at GLONASS signals and perform a study about the structure of the system. Three experiments were performed, the first one is related to the application of PPP (Precise Point Positioning), the second one is about static relative positioning and the third one is about network based positioning (specifically in the Virtual Reference Station concept).To enable the network based positioning the software VRS-UNESP was adapted, in order to allow the generation of virtual stations with GLONASS or GPS/GLONASS data. In the three methodologies were selected three regions of Brazil with distinct ionospheric behavior, in order to evaluate the scintillation effect in the positioning. It was selected regions near to the geomagnetic equator, regions near the fountain effect and in the south of the country, where the ionosphere effect is less intense. For the PPP, considering all the configurations adopted, there was improvement with the use of GPS and GLONASS combined data in 92,28% of the days analyzed. For the relative positioning the results obtained were more irregulars than the ones from PPP. In such case it was achieved improvement in 69,18% of the cases with the use of combined data. The virtual data were processed in a procedure similar to the one used in the PPP experiment. It was achieved improvement in 100% of the cases that were used GPS and GLONASS data.
|
15 |
Využití elektronických systémů pro řízení provozu strojůBazgier, Tomáš January 2018 (has links)
This diploma thesis is about electronic and information systems for machine opera-tion control. The theoretical part describes transport telematics, the main systems of satellite positioning used in transport and the specific application of these systems in selected branches. In the practical part, the evaluation of the telematics application Fleet Management in joint-stock company Lesostavby Frýdek-Místek, which uses this system for the control and management of its own fleet, was carried out. The various tools of the given system and their use were described. According to the system outputs after the measurement, the accuracy of the track length recording when moving vehicles on the road was evaluated.
|
16 |
Calculations for positioning with the Global Navigation Satellite SystemCheng, Chao-heh January 1998 (has links)
No description available.
|
17 |
Undersökning av GNSS flervägsfel på campusområdet vid Högskolan i GävleSälg, Daniel, Hjorter, August January 2019 (has links)
Multipath error is a source of uncertainty within GNSS (Global Navigation Satellite System) where signals are reflected on various surfaces before they reach the receiver. The phenomenon causes a delay in the receiver when the reflected signal travels a longer distance than the direct one. Despite the fact that there is a good knowledge of the error, multipath effects are still a complex subject since its origin varies a lot. This has led to a number of different methods being developed for the purposes to distinguish and treat the error. The main goal of this study is to investigate the size and distribution of multipath errors and to present which satellites contributes to the most multipath effects meanwhile evaluating the existence of possible reflective objects. As a result, static measured coordinates are also analyzed against coordinates from a real-time measurement in order to study possible connections related to multipath errors. The study is based on observations measured over 16 points on the green area in front of house 45 at the University of Gävle. Furthermore, data processing and analysis are performed in the open software RTKlib with associated program extensions. The result of the study shows that multipath errors have an influence on GNSS-measurements over the survey area and that these errors vary in centimeters to a decimeter level in mean value and RMS for all points. Furthermore, it also appears from the study that satellites that are at higher elevation also emit signals containing multipath errors. In addition, it may be noted that signals even at higher elevation masks contribute to multipath errors over the points where points 2, 3 and 12 are most affected. Furthermore, signals from the satellites R10, R11, R19, R20 and G15 contain high multipath on both L1 and L2 frequencies. Possible sources of reflections was estimated over the area for points 2, 3 and 12 from the correlation between high multipath errors and direction towards the investigation area. / Flervägsfel är en osäkerhetskälla inom GNSS (Global Navigation Satellite System) där signalerna reflekteras innan de når mottagaren. Fenomenet orsakar en fördröjning hos mottagaren då den reflekterade signalen färdas en längre sträcka än den direkta. Trots att det idag finns en god kännedom kring felkällan är flervägsfel fortsatt komplex eftersom dess ursprung är väldigt varierande. Detta har medfört att en rad olika metoder tagits fram för experimentella ändamål inom området. Syftet med denna studie är att undersöka storlek och fördelning av flervägsfel samt visa på vilka satelliter som bidrar mest till effekterna av felkällan samtidigt som eventuella reflekterande objekt utvärderas. I följd av detta analyseras även efterberäknade koordinater mot koordinater från en realtidsmätning för att om möjligt kunna studera eventuella samband relaterat till flervägsfel. Studien grundar sig på observationer mätta med statisk metod över 16 punkter på gräsytan framför hus 45 vid Högskolan i Gävle. Vidare utförs databehandling och analyser i den öppna programvaran RTKlib med tillhörande programtillägg. Resultatet av undersökningen visar att flervägsfel har en påverkan på GNSS-mätningar över undersökningsområdet och att dessa fel varierar på centimeter till decimeternivå i medelvärde och RMS för samtliga punkter. Vidare framgår det också av undersökningen att satelliter som befinner sig vid högre elevationsmask också avger signaler innehållande flervägsfel. Som slutsats kan det konstateras att signaler även vid högre elevationsmask bidrar till flervägsfel över punkterna där punkterna 2, 3 och 12 är högst påverkade. Vidare innehåller signaler från satelliterna R10, R11, R19, R20 och G15 högt flervägsfel på både L1 och L2 frekvensen. Möjliga reflektionsobjekt uppskattades över området för punkterna 2, 3 och 12 från sambandet mellan högt flervägsfel samt riktning mot undersökningsområdet.
|
18 |
Die GLONASS-Mehrdeutigkeitslösung beim Precise Point Positioning (PPP)Reußner, Nico 28 April 2016 (has links) (PDF)
Precise Point Positioning (PPP) ermöglicht eine präzise Positionsbestimmung mittels globaler Satellitennavigationssysteme (Global Navigation Satellite System, GNSS) ohne die direkte Verwendung der Beobachtungsdaten von regionalen Referenzstationen. Die wesentlichste Einschränkung von PPP im Vergleich zu differenziellen Auswertetechniken (Real-Time Kinematic, RTK) ist die deutlich längere Konvergenzzeit. Voraussetzung für die Verkürzung der Konvergenzzeit ist die Festsetzung der geschätzten Mehrdeutigkeiten auf ganzzahlige Werte. Die Mehrdeutigkeitslösung verlangt ein robustes funktionales Modell und beruht auf einem zweistufigen Mehrdeutigkeitsfestsetzungsverfahren, welches frei von ionosphärischen Einflüssen 1. Ordnung ist. Die sowohl auf Code- als auch auf Phasenbeobachtungen basierende Melbourne-Wübbena-Linearkombination erlaubt hierbei eine einfache Festsetzung der Widelane-Mehrdeutigkeiten. Infolgedessen kann zur Berechnung der ionosphären-freien Linearkombination die im Vergleich zur Wellenlänge der ionosphären-freien Linearkombination deutlich größere Narrowlane-Wellenlänge verwendet werden.
Zur Stabilisierung des im Normalfall lediglich auf den Beobachtungsdaten des amerikanischen Global Positioning System (GPS) beruhenden funktionalen Modells können die Beobachtungsdaten des russischen GLObal’naya NAvigatsioannaya Sputnikovaya Sistema (GLONASS) beitragen. Aufgrund der Technik, die GLONASS zur Identifizierung der einzelnen Satelliten einsetzt (Frequency Division Multiple Access, FDMA), unterscheiden sich die Frequenzen der einzelnen Satelliten. Die leicht unterschiedlichen Frequenzen erschweren die Modellierung und Korrektion der instrumentell bedingten Signalverzögerungen (z. B. Fractional-Cycle Biases (FCB)). Vor diesem Hintergrund kann das konventionelle Mehrdeutigkeitsfestsetzungsverfahren nur bedingt für GLONASS verwendet werden.
Die Untersuchung der instrumentell bedingten GLONASS-Signalverzögerungen sowie die Entwicklung einer alternativen Methode zur Festsetzung der GLONASS-Mehrdeutigkeiten mit dem Ziel einer kombinierten GPS/GLONASS-Mehrdeutigkeitslösung sind die Schwerpunkte der vorliegenden Arbeit. Die entwickelte alternative Mehrdeutigkeitsfestsetzungsstrategie baut auf der puren Widelane-Linearkombination auf, weshalb globale Ionosphärenmodelle unabdingbar sind. Sie eignet sich sowohl für GLONASS als auch für GPS und zeigt gleichwertige Ergebnisse für beide GNSS, wenngleich im Vergleich zur konventionellen Methode mit geringeren Mehrdeutigkeitsfestsetzungsquoten zu rechnen ist. / Precise Point Positioning (PPP) allows for accurate Global Navigation Satellite System (GNSS) based positioning without the immediate need for observations collected by regional station networks. The fundamental drawback of PPP in comparison to differential techniques such as Real-Time Kinematic (RTK) is a significant increase in convergence time. Among a plurality of different measures aiming for a reduction of convergence time, fixing the estimated carrier phase ambiguities to integer values is the key technique for success. The ambiguity resolution asks for a robust functional model and rests upon a two-stage method ruling out first-order ionospheric effects. In this context the Melbourne-Wübbena linear combination of dual-frequency carrier phase and code measurements leverages a simple resolution of widelane ambiguities. As a consequence the in comparison to the wavelength of the ionosphere-free linear combination significantly longer narrowlane wavelength can be used to form the ionosphere-free linear combination.
By default the applied functional model is solely based on observations of the Global Positioning System (GPS). However measurements from the GLObal’naya NAvigatsioannaya Sputnikovaya Sistema (GLONASS) can contribute to improve the model’s stability significantly. Due to the technique used by GLONASS to distinguish individual satellites (Frequency Division Multiple Access, FDMA), the signals broadcast by those satellites differ in their frequencies. The resulting slightly different frequencies constitute a barricade for both modelling and correcting any device-dependent signal delays, e.g. fractional-cycle biases (FCB). These facts limit the applicability of the conventional ambiguity-fixing approach when it comes to GLONASS signals.
The present work puts a focus both on investigating the device-dependent GLONASS signal delays and on developing an alternative method for fixing GLONASS ambiguities with the ultimate objective of a combined GPS/GLONASS ambiguity resolution. The alternative ambiguity resolution strategy is based on the pure widelane linear combination, for which reason ionospheric corrections are indispensable. The procedure is applicable for GLONASS in the first instance but reveals equivalent results for both GPS and GLONASS. The disadvantage relative to the conventional approach is the reduced ambiguity fixing success rate.
|
19 |
Die GLONASS-Mehrdeutigkeitslösung beim Precise Point Positioning (PPP)Reußner, Nico 28 September 2015 (has links)
Precise Point Positioning (PPP) ermöglicht eine präzise Positionsbestimmung mittels globaler Satellitennavigationssysteme (Global Navigation Satellite System, GNSS) ohne die direkte Verwendung der Beobachtungsdaten von regionalen Referenzstationen. Die wesentlichste Einschränkung von PPP im Vergleich zu differenziellen Auswertetechniken (Real-Time Kinematic, RTK) ist die deutlich längere Konvergenzzeit. Voraussetzung für die Verkürzung der Konvergenzzeit ist die Festsetzung der geschätzten Mehrdeutigkeiten auf ganzzahlige Werte. Die Mehrdeutigkeitslösung verlangt ein robustes funktionales Modell und beruht auf einem zweistufigen Mehrdeutigkeitsfestsetzungsverfahren, welches frei von ionosphärischen Einflüssen 1. Ordnung ist. Die sowohl auf Code- als auch auf Phasenbeobachtungen basierende Melbourne-Wübbena-Linearkombination erlaubt hierbei eine einfache Festsetzung der Widelane-Mehrdeutigkeiten. Infolgedessen kann zur Berechnung der ionosphären-freien Linearkombination die im Vergleich zur Wellenlänge der ionosphären-freien Linearkombination deutlich größere Narrowlane-Wellenlänge verwendet werden.
Zur Stabilisierung des im Normalfall lediglich auf den Beobachtungsdaten des amerikanischen Global Positioning System (GPS) beruhenden funktionalen Modells können die Beobachtungsdaten des russischen GLObal’naya NAvigatsioannaya Sputnikovaya Sistema (GLONASS) beitragen. Aufgrund der Technik, die GLONASS zur Identifizierung der einzelnen Satelliten einsetzt (Frequency Division Multiple Access, FDMA), unterscheiden sich die Frequenzen der einzelnen Satelliten. Die leicht unterschiedlichen Frequenzen erschweren die Modellierung und Korrektion der instrumentell bedingten Signalverzögerungen (z. B. Fractional-Cycle Biases (FCB)). Vor diesem Hintergrund kann das konventionelle Mehrdeutigkeitsfestsetzungsverfahren nur bedingt für GLONASS verwendet werden.
Die Untersuchung der instrumentell bedingten GLONASS-Signalverzögerungen sowie die Entwicklung einer alternativen Methode zur Festsetzung der GLONASS-Mehrdeutigkeiten mit dem Ziel einer kombinierten GPS/GLONASS-Mehrdeutigkeitslösung sind die Schwerpunkte der vorliegenden Arbeit. Die entwickelte alternative Mehrdeutigkeitsfestsetzungsstrategie baut auf der puren Widelane-Linearkombination auf, weshalb globale Ionosphärenmodelle unabdingbar sind. Sie eignet sich sowohl für GLONASS als auch für GPS und zeigt gleichwertige Ergebnisse für beide GNSS, wenngleich im Vergleich zur konventionellen Methode mit geringeren Mehrdeutigkeitsfestsetzungsquoten zu rechnen ist. / Precise Point Positioning (PPP) allows for accurate Global Navigation Satellite System (GNSS) based positioning without the immediate need for observations collected by regional station networks. The fundamental drawback of PPP in comparison to differential techniques such as Real-Time Kinematic (RTK) is a significant increase in convergence time. Among a plurality of different measures aiming for a reduction of convergence time, fixing the estimated carrier phase ambiguities to integer values is the key technique for success. The ambiguity resolution asks for a robust functional model and rests upon a two-stage method ruling out first-order ionospheric effects. In this context the Melbourne-Wübbena linear combination of dual-frequency carrier phase and code measurements leverages a simple resolution of widelane ambiguities. As a consequence the in comparison to the wavelength of the ionosphere-free linear combination significantly longer narrowlane wavelength can be used to form the ionosphere-free linear combination.
By default the applied functional model is solely based on observations of the Global Positioning System (GPS). However measurements from the GLObal’naya NAvigatsioannaya Sputnikovaya Sistema (GLONASS) can contribute to improve the model’s stability significantly. Due to the technique used by GLONASS to distinguish individual satellites (Frequency Division Multiple Access, FDMA), the signals broadcast by those satellites differ in their frequencies. The resulting slightly different frequencies constitute a barricade for both modelling and correcting any device-dependent signal delays, e.g. fractional-cycle biases (FCB). These facts limit the applicability of the conventional ambiguity-fixing approach when it comes to GLONASS signals.
The present work puts a focus both on investigating the device-dependent GLONASS signal delays and on developing an alternative method for fixing GLONASS ambiguities with the ultimate objective of a combined GPS/GLONASS ambiguity resolution. The alternative ambiguity resolution strategy is based on the pure widelane linear combination, for which reason ionospheric corrections are indispensable. The procedure is applicable for GLONASS in the first instance but reveals equivalent results for both GPS and GLONASS. The disadvantage relative to the conventional approach is the reduced ambiguity fixing success rate.
|
20 |
Analysis of a Combined GLONASS/Compass-I Navigation AlgorithmPeng, Song, Xiao-yu, Chen, Jian-zhong, Qi 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / Compass-I system is China has built satellite navigation system. It's a kind of regional position system according to the double-star position principle. Commonly, Compass-I system need adopt active position, in the paper several passive position methods are put forward. A combination navigation mode based on GLONASS and Compass-I passive navigation is proposed in this paper. The differences of coordinates and time systems between those two navigation systems are analyzed. User position is calculated by least squares method. Combination Navigation Algorithm can improve visible satellite constellation structure and positioning precision so as to ensure the reliability and continuity of positioning result.
|
Page generated in 0.0451 seconds