1 |
A novel spray-drying process to stabilize glycolate oxidase and catalase in Pichia pastoris and optimization of pyruvate production from lactate using the spray-dried biocatalystGlenn, James Huston. Subramanian, Mani. January 2009 (has links)
Thesis supervisor: Mani Subramanian. Includes bibliographic references (p. 121-125).
|
2 |
A novel spray-drying process to stabilize glycolate oxidase and catalase in Pichia pastoris and optimization of pyruvate production from lactate using the spray-dried biocatalystGlenn, James Huston 01 December 2009 (has links)
Pyruvate is a valuable chemical intermediate in the production of fine chemicals used by agrochemical, pharmaceutical, and food industries. Current technology for production of pyruvic acid is based on conversion from tartaric acid and results in environmentally incompatible byproducts. An enzymatic approach to making pyruvate was developed by cloning the glycolate oxidase (GO) gene from spinach into Pichia pastoris (Payne, et al., (1995). High-level production of spinach glycolate oxidase in the methylotrophic yeast Pichia pastoris: Engineering a biocatalyst. Gene, 167(1-2), 215-219). GO is a flavoprotein (FMN dependent) which catalyzes the conversion of lactate to pyruvate with the equimolar production of hydrogen peroxide. Hydrogen peroxide can lower GO activity and make non-catalytic byproducts, so catalase was also cloned into P. pastoris to create a double transformant.
Process development work was completed at the University of Iowa's Center for Biocatalysis and Bioprocessing. High-density P. pastoris fermentation (7.2 kg cells/L) was completed at the 100 L scale. Critical fermentation set-points were confirmed at 14 h glycerol feeding followed by methanol induction at 2 - 10 g/L for 30 h. After fermentation, these cells were permeabilized with benzalkonium chloride (BAC) to enable whole-cell biocatalysis and increase enzyme activity, yielding 100 U/g for GO. In 30 L enzyme reactions, permeabilized cells were recycled three times for over 92% conversion of 0.5 M lactate with an "enzyme to product" ratio of approximately 1:2 (Gough, et al., (2005). Production of pyruvate from lactate using recombinant Pichia pastoris cells as catalyst. Process Biochemistry, 40(8), 2597-2601). Though effective, the post-fermentation process for GO recovery involved several unit-operations, including multiple washing steps to remove residual BAC.
The present work has focused on minimizing unit-operations by spray-drying the fermentation product to create a powdered biocatalyst. Optimal spray-drying conditions for the Buchi B-190 instrument were 150°C drying air, 15 mL/min liquid feed rate, and 600 mg cells/mL liquid feed. These conditions resulted in P. pastoris biocatalyst with activities of 80 - 100 U/g for GO and 180,000 - 220,000 U/g for catalase. The spray-dried cells retained nearly 100% of the enzyme activity compared to BAC treated cells as reported by Gough et al. Additionally, the spray-dried biocatalyst was stable at room temperature for 30 days, and no measurable enzyme leaching was observed. Then, P. pastoris was spray-dried under optimal conditions and tested for conversion of lactate to pyruvate for an improved "enzyme to product" ratio.
Enzyme reaction optimization was done at the one-liter scale in DASGIP reactors. The DASGIP system contained four parallel reactors with control of temperature, pH, and dissolved oxygen. Other key variables included substrate loading, conducting the reaction in buffer or water, minimizing enzyme concentration, and maximizing the number of enzyme recycles. Optimal performance was achieved in water at pH 7.0 with an operating temperature of 25°C and 1.0 M substrate loading. Enzyme loading was at 12 g/L for the first two cycles, and subsequently, 2 - 3 g/L of fresh cells were added every alternate cycle to reach 15 cycles. Under these conditions, 75 - 95% conversion of lactate to pyruvate was accomplished for every 12 - 16 h reaction cycle. Based on these parameters, an "enzyme to product" ratio of 1:41 was achieved.
|
3 |
Recherche de suppresseurs de la toxicité induite chez Arabidopsis thaliana par l’effecteur de type 3 DspA/E et étude du stress oxydant au cours de l’infection / Looking for suppressors of the induced toxicity by the type 3 effector DspA/E in Arabidopsis thaliana and study of the oxidative stress during the infection.Launay, Alban 23 May 2014 (has links)
La bactérie Erwinia amylovora est responsable de la maladie du feu bactérien des Maleae (pommier, poirier…). Le pouvoir pathogène de cette bactérie dépend d'une seringue moléculaire appelé système de sécrétion de type 3 (SSTT). Ce SSTT permet à la bactérie d’injecter des effecteurs dans les cellules de la plante. Parmi les effecteurs injectés, DspA/E est l'effecteur indispensable au pouvoir pathogène d’E. amylovora. Cet effecteur est à lui seul capable de provoquer la mort des cellules chez le pommier et le tabac et permet à la bactérie de se multiplier de manière transitoire chez A. thaliana. L’objectif de ce travail de thèse était de comprendre la fonction de DspA/E dans la cellule végétale et d’identifier des facteurs végétaux impliqués dans la toxicité de DspA/E. Afin de répondre à cette question, des plantes transgéniques exprimant DspA/E sous contrôle d’un promoteur inductible à l’estradiol ont été construites.Dans un premier temps, la caractérisation phénotypique des lignées exprimant DspA/E a été effectuée. Les résultats obtenus montrent que DspA/E est toxique lorsqu'il est exprimé in planta (il provoque la mort des cellules, inhibe la germination, la croissance racinaire et la traduction) et permet la multiplication in planta d’un mutant dspA/E. Un crible de mutants suppresseurs de la toxicité de l'effecteur DspA/E a été effectué sur une lignée transgénique exprimant DspA/E dans le but d'identifier un ou plusieurs gènes impliqués dans la toxicité de DspA/E. Ce crible suppresseur a permis d'identifier un candidat potentiel impliqué dans la photo-respiration, la glycolate oxydase 2 (GOX2). L’analyse fonctionnelle réalisée sur le mutant gox2-2 a permis de montrer que le gène GOX2 est un régulateur positif des réponses de défense d’A. thaliana en réponse à l’infection par E. amylovora.Enfin, la caractérisation du stress oxydant a permis de montrer que plusieurs formes actives de l’oxygène (H2O2 et O2.-) s’accumulent au cours de l’interaction entre A. thaliana et E. amylovora. Ceci a permis également de comprendre le rôle de DspA/E sur ce stress oxydant. Nos résultats suggèrent que la glycolate oxydase 2 participerait à l’induction du stress oxydant en perturbant le métabolisme des sucres. / The bacterium E. amylovora is responsible for the fire blight disease of Maleae (apple, pear…). The pathogenicity of this bacterium relies on a molecular syringe, the type three secretion system (TTSS). This TTSS allows the bacterium to inject effector proteins into the plant cell. Among these effectors, DspA/E is essential for the pathogenicity of E. amylovora. This effector can provoke cell death on apple and tobacco and allows the bacterium to multiply transiently in A. thaliana.The purpose of the thesis was to understand the function of DspA/E in the plant cell and to identify plant factors involved in the toxicity of DspA/E. To answer this question, transgenic plants which express DspA/E under an estradiol-inducible promoter were built.At first, phenotypical characterization of DspA/E transgenic lines was performed. Our results showed that DspA/E is toxic when expressed in planta (it provokes cell death, inhibits germination, root growth and translation) and allows in planta multiplication of dspA/E bacterial mutant. A screening for suppressor mutants of DspA/E toxicity was performed on a DspA/E transgenic line in order to identify one or several genes involved in the toxicity of DspA/E. This screening allowed us to identify a potential candidate involved in photorespiration, the glycolate oxidase 2 (GOX2). Functional analysis performed on the gox2-2 mutant allowed us to show that the GOX2 gene is a positive regulator of A. thaliana responses against E. amylovora.Finally, characterization of oxidative stress allowed us to show that several reactive oxygen species (H2O2 et O2.-) accumulate during A. thaliana and E. amylovora interaction. This allowed us to understand the role of DspA/E in the oxidative stress. Our results suggest that the glycolate oxidase 2 could be involved in the induction of the oxidative stress by disrupting sugar metabolism.
|
4 |
Recherche de suppresseurs de la toxicité induite chez Arabidopsis thaliana par l'effecteur de type 3 DspA/E et étude du stress oxydant au cours de l'infectionLaunay, Alban 23 May 2014 (has links) (PDF)
La bactérie Erwinia amylovora est responsable de la maladie du feu bactérien des Maleae (pommier, poirier...). Le pouvoir pathogène de cette bactérie dépend d'une seringue moléculaire appelé système de sécrétion de type 3 (SSTT). Ce SSTT permet à la bactérie d'injecter des effecteurs dans les cellules de la plante. Parmi les effecteurs injectés, DspA/E est l'effecteur indispensable au pouvoir pathogène d'E. amylovora. Cet effecteur est à lui seul capable de provoquer la mort des cellules chez le pommier et le tabac et permet à la bactérie de se multiplier de manière transitoire chez A. thaliana. L'objectif de ce travail de thèse était de comprendre la fonction de DspA/E dans la cellule végétale et d'identifier des facteurs végétaux impliqués dans la toxicité de DspA/E. Afin de répondre à cette question, des plantes transgéniques exprimant DspA/E sous contrôle d'un promoteur inductible à l'estradiol ont été construites.Dans un premier temps, la caractérisation phénotypique des lignées exprimant DspA/E a été effectuée. Les résultats obtenus montrent que DspA/E est toxique lorsqu'il est exprimé in planta (il provoque la mort des cellules, inhibe la germination, la croissance racinaire et la traduction) et permet la multiplication in planta d'un mutant dspA/E. Un crible de mutants suppresseurs de la toxicité de l'effecteur DspA/E a été effectué sur une lignée transgénique exprimant DspA/E dans le but d'identifier un ou plusieurs gènes impliqués dans la toxicité de DspA/E. Ce crible suppresseur a permis d'identifier un candidat potentiel impliqué dans la photo-respiration, la glycolate oxydase 2 (GOX2). L'analyse fonctionnelle réalisée sur le mutant gox2-2 a permis de montrer que le gène GOX2 est un régulateur positif des réponses de défense d'A. thaliana en réponse à l'infection par E. amylovora.Enfin, la caractérisation du stress oxydant a permis de montrer que plusieurs formes actives de l'oxygène (H2O2 et O2.-) s'accumulent au cours de l'interaction entre A. thaliana et E. amylovora. Ceci a permis également de comprendre le rôle de DspA/E sur ce stress oxydant. Nos résultats suggèrent que la glycolate oxydase 2 participerait à l'induction du stress oxydant en perturbant le métabolisme des sucres.
|
5 |
Enzyme linked spectroscopic assays for Glyoxylate: The use of Peptidylglycine alpha-Amidating Monoxygenase for the discovery of Novel alpha-Amidated hormonesCarpenter, Sarah Elizabeth 01 June 2006 (has links)
Peptide hormones are responsible for cellular functions critical to the survival of an organism. Approximately 50% of all known peptide hormones are post-translationally modified at the C-terminus. Enzymatic oxidative conversion of C-terminal glycine extended peptide precursors results in an a-amidated peptide and glyoxylate. Peptidylglycine a-amidating monooxygenase (PAM) is the single known enzyme responsible for catalyzing this reaction. PAM is an O2, Cu(II), and Zn(II) dependent bifunctional enzyme. Initially, PAM hydroxylates the glycyl a-carbon followed by dealkylation of the hydroxylated intermediate to an a-amidated product and glyoxylate. PAM is also responsible for the conversion of glycine extended fatty acids to fatty acid amides and glyoxylate. PAM catalyzes the activation of all glycine-extended prohormones including biomolecules ranging from neuro to physio-homeostatic hormones.
Identification of a-amidated hormones from a biological source has been severely hindered by the lack of a specific assay for this distinctive class of biological hormones, indicating that numerous a-amidated hormones remain undiscovered. Based on the selective in situ chemistry of PAM, a novel and specific assay was developed for the discovery of a-amidated hormones. The identification of novel a-amidated hormones will lead to an increased understanding of post-translational modifications and will pioneer a new understanding of a-amidated hormone biosynthesis, regulation, and bioactivity. Discovery of novel a-amidated biomolecules could also lead to their use as pharmaceuticals as there are several currently marketed a-amidated peptide based pharmaceuticals.Inhibition of PAM in cell culture leads to the accumulation of glycine-extended hormones in the conditioned medium. The medium was fractionated by chromatographic techniques and each specific fraction was then assayed by the newly developed platform technology for the presence of a-amidated hormones.
For every a-amidated hormone synthesized by PAM, glyoxylate is also formed. Based on this 1:1 molar ratio, several novel spectrophotometric, fluorescent, and chemi-luminescent enzyme linked assays for glyoxylate were developed, which when utilized on cell culture fractions proved positive for the identification of a-amidated hormones. Each novel spectroscopic assay was independently verified by a variety of known methodologies. Moreover the assay was utilized to identify two known a-amidated hormones accumulated from cell culture, which were further verified by Mass Spectral analysis.
|
6 |
Functional analysis of glutathione and autophagy in response to oxidative stress / Analyse fonctionnelle du glutathion et de l'autophagie en réponse au stress oxydatifHan, Yi 21 December 2012 (has links)
Le H2O2 est reconnu comme un signal dans l’activation des mécanismes de défense en réponse à divers stress, et son accumulation est donc régulée étroitement par le système antioxydant des plantes. Puisque la signalisation par le H2O2 peut être transmise par des processus thiol-dépendants, le statut du glutathion pourrait jouer un rôle important. Le rôle de ce composé en tant que molécule antioxydante est bien établi; cependant, son importance en tant que signal reste à élucider. Afin d’étudier cette question, ce travail a utilisé un mutant, cat2, ayant un défaut dans son métabolisme du H2O2 peroxysomal qui engendre, d’une manière conditionnelle, une oxydation et une accumulation du glutathion. Les modifications du glutathion dans cat2 sont accompagnées par l’activation à la fois de réponses dépendantes de l’acide salicylique (SA) ainsi que l’expression de gènes associés à l’acide jasmonique (JA). L’activation des deux voies phytohormonales par le stress oxydant intracellulaire est largement empêchée en bloquant génétiquement l’accumulation du glutathion dans un double mutant, cat2 cad2, qui porte une mutation additionnelle dans la voie de synthèse du glutathion. Les phénotypes contrastants de cat2 cad2 et cat2 gr1, dans lequel la perte de l’activité GR1 aggrave le stress oxydant, suggèrent que des processus glutathion-dépendants relient le H2O2 et l’activation des réponses de pathogenèse SA-dépendantes par un effet qui est additionnel aux fonctions antioxydantes du glutathion. Des comparaisons directes de cat2 cad2 et cat2 npr1 indiquent que les effets de bloquer l’accumulation du glutathion sur l’induction des voies SA et JA chez cat2 ne sont pas causés par une déficience dans la fonction de la NPR1. L’autophagie a été impliquée dans des processus comme la sénescence, et interagirait à la fois avec le stress oxydant et avec la signalisation par le SA. Afin d’explorer des relations entre autophagie et stress oxydant, des mutants atg ont été sélectionnés et croisés avec le cat2. Des analyses phénotypiques ont révélé que l’étendue de lésions SA-dépendantes observée chez cat2 cultivé en jours longs est similaire chez trois double mutants cat2 atg, alors que l’augmentation de la disponibilité en H2O2 peroxysomal liée à la mutation cat2 retarde la sénescence précoce observée chez les mutants atg. Dans son ensemble, le travail suggère que (1) des nouvelles fonctions glutathion-dépendantes sont importantes pour relier la disponibilité en H2O2 intracellulaire et activation des voies de signalisation SA et JA, et (2) que le H2O2 produit par la photorespiration pourrait jouer un rôle antagoniste dans les phénotypes de sénescence précoce observée chez les mutants atg. / H2O2 is a recognized signal in activation of defence mechanisms in response to various stresses, and its accumulation is thus tightly controlled by plant antioxidant systems. Because H2O2 signals may be transmitted by thiol-dependent processes, glutathione status could play an important role. While the antioxidant role of this compound is long established, the importance of glutathione in signaling remains unclear. To study this question, this work exploited a stress mimic mutant, cat2, which has a defect in metabolism of peroxisomal H2O2 that conditionally leads to oxidation and accumulation of glutathione. In cat2, changes in glutathione are accompanied by activation of both salicylic acid (SA)-dependent responses and jasmonic acid (JA)-associated genes in a time-dependent manner. This up-regulation of both phytohormone signaling pathway by intracellular oxidative stress can be largely prevented by genetically blocking glutathione accumulation in a double mutant, cat2 cad2, that additionally carries a mutation in the pathway of glutathione synthesis. Contrasting phenotypes between cat2 cad2 and cat2 gr1, in which loss of GR1 activity exacerbates oxidative stress, suggest that glutathione-dependent processes couple H2O2 to activation of SA-dependent pathogenesis responses through an effect that is additional to glutathione antioxidant functions. Direct comparison of cat2 cad2 and cat2 npr1 double mutants suggests that the effects of blocking glutathione accumulation on cat2-triggered up-regulation of both SA and JA pathways are not mediated by defective NPR1 function. Autophagy has been implicated in processes such as senescence, and may interact with oxidative stress and SA signaling. To explore relationships between autophagy and oxidative stress, selected atg mutants were crossed with cat2. Phenotypic analysis revealed that SA-dependent lesion spread observed in cat2 grown in long days is similar in three cat2 atg double mutants, whereas increased peroxisomal H2O2 availability in cat2 delays an oxidative stress related-senescence triggered by atg in short days. Overall, the work suggests that (1) novel glutathione-dependent functions are important to couple intracellular H2O2 availability to the activation of both SA and JA signaling pathways and (2) H2O2 produced through photorespiration may play an antagonistic role in the early senescence phenotype observed in atg mutants.
|
Page generated in 0.0762 seconds