• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 15
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatty acid breakdown in developing embryos of Brassica napus (L)

Chia, Tansy Mee Peing January 2002 (has links)
No description available.
2

Characterisation of human D-glycerate dehydrogenase/glyoxylate reductase

Giafi, Chrysanthi Foteini January 1998 (has links)
No description available.
3

Synthèse, dégradation et bio-propriétés du polyglyoxylate d'éthyle / Synthesis, degradation and bio-properties of poly(ethyl glyoxylate)

Belloncle, Benjamine 28 March 2008 (has links)
Ce travail porte sur l'étude du polyglyoxylate d'ethyle (PGEt) : sa synthèse, sa caractérisation et sa dégradation. Le PGEt a été obtenu par polymérisation anionique. Les conditions optimales font intervenir un amorçage par NE3 dans le CH2Cl2 à une température inférieure à -20°C. L'existence d'une température plafond (Tp = 310K pour [M]0 = 1M) nécessite l'utilisation d'agents de terminaison (phényl isocyanate ou bromure de 2-bromo-2-méthyl propionyle) afin d'obtenir des PGEt stables. La dégradation par hydrolyse in vitro du PGEt a été étudiée par RMN 1H, CES... Le mécanisme fait intervenir des coupures de chaines et des hydrolyses des esters. Les produits ultimes de dégradation identifiés sont l'éthanol et l'hydrate d'acide glyoxylique. Le caractère biodégradable du PGEt a été confirmé par respirométrie. Des études préliminaires de toxicité (sur des hématies, le nématode C. Elegans, et la croissance des plantes) n'ont pas révélé d'effet nocif du PGEt et de ses produits de dégradation. / This work focuses on the study of poly(ethyl glyoxylate) (PRtG), from its synthesis and its characterization to its degradation to some biological applications. The chosen conditions for PEtG's synthesis were initiated by an anionic way (NEt3) in presence of CH2Cl2. Because the ceiling temperature of the monomer (EtG) is low (7°C), it is necessary to block the hydroxyl ended groups generated in situ. The use of PhNCO leads to stables PEtG. The PEtG can be used as a macroinitiator of atom transfer radical polymerization (ATRP if it is wisely done. The copolymerization of styrene is then controlled. The degradation by in vitro hydrolysis of PEtG mainly led to ethanol and glyoxylic acid hydrate release. The biodegradable character of PGEt was assessed by a respirometric test and a preliminary study of toxicity (on red blood cells, worms and plants) revealed no significant effect at the concentrations generally used.
4

Cloning and Expression of Isocitrate Lyase From Human Round Worm Strongyloides Stercoralis

Siddiqui, A. A., Stanley, C. S., Berk, S. L. 01 January 2000 (has links)
A full length cDNA (1463 bp) encoding isocitrate lyase (EC 4.1.3.1) of Strongyloides stercoralis is described. The nucleotide sequence of this insert identified a cDNA coding for the isocitrate lyase. The conceptually translated amino acid sequence of the open reading frame for S. stercoralis isocitrate lyase encodes a 450 amino acid residue protein with an apparent molecular weight of 50 kDa and a predicted pl of 6.39. The sequence is 69 % A/T, reflecting a characteristic A/T codon bias of S. stercoralis. The amino acid sequence of S. stercoralis isocitrate lyase is compared with bifunctional glyoxylate cycle protein of Caenorhabditis elegans and isocitrate lyases from Chlamydomonas reinhardtii and Myxococcus xanthus. The full length cDNA of S. stercoralis was expressed in pRSET vector and bacteriophage T7 promoter based expression system. S. stercoralis lyase recombinant protein, purified via immobilized metal affinity chromatography, showed a molecular mass of 50 kDa on polyacrylamide gels. The role of isocitrate lyase in the glyoxylate cycle and energy metabolism of S. stercoralis is also discussed.
5

The role of glyoxylic acid in the chemistry of the origin of life

Butch, Christopher J. 07 January 2016 (has links)
I present detailed mechanistic analysis on the chemistry of glyoxylate as it pertains to forming biologically relevant molecules on the Hadean Earth. Chemistry covered includes: 1) the dimerization of glyoxylate to form dihydroxyfumarate(DHF), a heretofore unknown reaction, important to substantiating Eschenmoser's glyoxylate scenario. 2) Formation of sugars from polymerization of glyoxylate. 3) Formation of tartrate and sugar acids from high pH reactions of DHF. 4) Formation of glycine polypeptides from glyoxylate by transamination and coupling promoted by hexamethylenetetramine. 5) Formation of glyoxylate under conditions which could be plausibly found on the early earth.
6

Etude fonctionnelle de la β-oxydation chez la levure pathogène opportuniste Candida lusitaniae : caractérisation d’une voie mitochondriale et peroxysomale Fox2p-dépendante et mise en évidence d’une voie peroxysomale alternative Fox2p-indépendante de catabolisme des acides gras / Functional study of fatty acid β-oxidation in the opportunistic pathogen yeast Candida lusitaniae : characterization of a mitochondrial and a peroxisomal Fox2p-dependant pathway and evidences for an alternative peroxisomal Fox2p-independent pathway for fatty acid catabolism

Gabriel, Frédéric 15 December 2011 (has links)
Les levures Candida sont des pathogènes opportunistes émergents. Après phagocytose macrophagique, C. albicans reprogramme son métabolisme pour faire face à une carence carbonée et induit 2 voies métaboliques, le cycle du glyoxylate et la β-oxydation. Notre objectif est d’étudier le lien entre β-oxydation, capacité de résistance à la phagocytose et virulence dans notre modèle biologique C. lusitaniae. Chez les levures Ascomycètes la β-oxydation, essentielle pour dégrader les acides gras (AG), est présumée être exclusivement peroxysomale.Nous avons construit 3 mutants nuls chez C. lusitaniae : icl1Δ, fox2Δ et pxa1Δ, respectivement défectifs pour l’isocitrate lyase (enzyme clé du cycle du glyoxylate), pour la protéine multifonctionnelle de la β-oxydation et pour une protéine responsable de l’import peroxysomal des AG à longue chaîne. L’étude de l’assimilation des AG et du catabolisme du 14Calpha-palmitoyl-CoA a révélé que les acyl-CoA à longue chaîne étaient toujours dégradés chez fox2Δ. L’étude du catabolisme des AG dans les fractions peroxysomale et mitochondriale des souches sauvage et fox2Δ, l’immunolocalisation de la protéine Fox2p et la mesure de la respiration mitochondriale nous ont permis de montrer pour la première fois chez une levure Ascomycète l’existence d’une β-oxydation Fox2p-dépendante dans la mitochondrie. C’est aussi la première démonstration chez un organisme eucaryote de la double localisation peroxysomale et mitochondriale de Fox2p. L’invalidation des gènes FOX1 et FOX3 (acyl-CoA oxydase et kétoacyl-CoA thiolase) a confirmé pour la première fois chez les champignons l’existence d’une voie peroxysomale alternative de catabolisme des AG, Fox2p-indépendante / The Candida spp. are emerging opportunistic pathogens. Phagocytic cells are a primary line of defense against these opportunistic pathogens. Upon phagocytosis by macrophages, C. albicans reprograms its metabolism because genes involved in the peroxisomal metabolism, such as glyoxylic acid cycle and beta-oxidation pathway, are overexpressed. The objective of this study was to study the relation between fatty acid beta-oxidation, resistance to phagocytosis and virulence in the biological model Candida lusitaniae. In ascomycetous yeasts, the fatty acid β-oxidation is assumed to be exclusively located to peroxisomes.We constructed three null-mutants in C. lusitaniae: icl1Δ, fox2Δ et pxa1Δ, respectively lacking the isocitrate lyase (a key enzyme of the glyoxylate cycle), the multifunctional fatty acid beta-oxidation protein (essential in C. albicans to the β-oxidation pathway), and a protein involved in the peroxisomal import of long-chain fatty acids. The study of fatty acid assimilation and 14Calpha-palmitoyl-CoA catabolism revealed that long-chain fatty acids were still catabolized in fox2Δ. The observation of 14Calpha-palmitoyl-CoA catabolism in mitochondrial and peroxisomal fractions of wild-type and fox2Δ strains, the immunolocalization of Fox2p and mitochondrial respiration measurements yielded to the first demonstration in ascomycetous yeast of a mitochondrial Fox2p-dependent fatty acid β-oxidation pathway. We also demonstrated for the first time in Eucaryota that Fox2p co-localized in both peroxisomes and mitochondria. The invalidation of FOX1 and FOX3 genes (acyl-CoA oxidase and ketoacyl-CoA thiolase, respectively) confirmed for the first time in Fungi the existence of an alternative peroxisomal pathway for fatty acid catabolism, Fox2p-independently.
7

Utilização das técnicas de engenharia genética e bioquímica em Chlamydomonas reinhardtii visando o aumento da produção de lipídeos para obtenção de biocombustível / Use of genetic and biochemical engineering in Chlamydomonas reinhardtii aiming the increase of the lipid level for biofuel production.

Villela, Helena Dias Müller 07 July 2014 (has links)
Os impactos ambientais causados pela queima dos combustíveis fósseis e pela sua manipulação, aliados ao crescente preço dos combustíveis, têm fomentado a procura de novos recursos renováveis e o desenvolvimento de novas tecnologias que suportem as necessidades desse mercado. Os biocombustíveis são recursos biodegradáveis e renováveis, que vêm se revelando uma alternativa economicamente viável. No entanto, a atual geração de biocombustíveis possui alguns pontos negativos, tais como: utilização de solos férteis e competição com a indústria de alimentos, uma vez que utiliza culturas como soja, milho e cana-de-açúcar, produtos de extrema importância econômica para seus países produtores. Por estes motivos, há um crescente interesse em explorar outras matérias-primas possíveis, em especial as voltadas exclusivamente para a geração de energia. Neste contexto, as microalgas vêm se mostrando uma opção bastante interessante. Estes organismos apresentam um alto potencial para tal, pois possuem alta taxa de crescimento e capacidade de produzir grande quantidade de óleo. Além disso, a produção do biocombustível por estes organismos pode ser otimizada tanto pela modificação das condições de cultivo (engenharia bioquímica), como através da manipulação genética das linhagens (engenharia genética). Neste trabalho, ambas as estratégias foram utilizadas com o intuito de se aumentar a quantidade de lipídeo produzido pela linhagem CC424 da microalga modelo Chlamydomonas reinhardtii. A via metabólica escolhida para a manipulação genética foi o ciclo do glioxilato, sendo as duas enzimas-chave desse ciclo, isocitrato liase (icl) e malato sintase (ms), os alvos. O plasmídeo pSL18 foi utilizado como vetor da transformação nas microalgas. Seis tipos de linhagens transformantes foram obtidas: duas delas subexpressando os genes icl e ms separadamente, duas subexpressando esses genes e duas contendo duplas transformações, ou seja, uma delas subexpressando ambos os genes ao mesmo tempo e a outra superexpressando os mesmos. Quando se subexpressou ambas as enzimas ao mesmo tempo, houve um aumento significativo na quantidade de lipídeos neutros da célula. Além disso, essa linhagem transgênica foi submetida à escassez de nitrogênio, o que acentuou ainda mais esse resultado. Enquanto em meio normal a diferença entre a quantidade de lipídeos foi de 1,5 vezes, em escassez de nitrogênio essa diferença foi de aproximadamente 3 vezes, corroborada pela diferença nos níveis de expressão gênica, que também foi em torno de 3 vezes. Além disso, a linhagem transgênica também mostrou um aumento em cada um dos ácidos graxos analisados individualmente, revelando uma grande quantidade de todos os tipos de C16 e C18, ácidos graxos importantes para que o biodiesel se adeque ao regulamento da Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Apesar de maior quantidade de lipídeos em relação à linhagem selvagem, a nova linhagem transgênica Dupla-ICL-MS-anti não mostrou nenhum efeito deletério crítico. Tanto a produção de biomassa, quanto a quantidade de clorofila a, proteínas totais e carboidratos totais se mantiveram estáveis após a introdução da mutação. Esses resultados sugerem que as enzimas do ciclo do glioxilato, sabidamente ligadas ao catabolismo de ácidos graxos, podem ser utilizadas como alvos promissores para a otimização de linhagens já utilizadas comercialmente na produção de biodiesel. / The environmental impacts caused by gases emitted from burning fossil fuels and their manipulation, combined with rising fuel prices, has stimulated demand for new renewable resources and developing new green technologies that support the industry and market needs. Biofuels are biodegradable and renewable resources, which come out to be an economically viable alternative. However, the current generation of biofuels has some disadvantages, such as: use of fertile soils and competition with the food industry, once it uses crops such as soybeans, corn and sugar cane, products of extreme economic importance to the producing countries. For these reasons, there is a growing interest in exploring other possible raw materials, especially those that are geared exclusively for power generation. In this context, microalgae have shown to be a very interesting option. These organisms have a high potential because they have fast growth rate and the ability to produce large amounts of oil. In addition, biofuel production by these organisms can be optimized for both the modification of culture conditions (biochemical engineering), and through the genetic manipulation of microalgae strains (genetic engineering). In this work, the two strategies have been used in order to increase the amount of lipid produced by the strain CC424 from the model organism Chlamydomonas reinhardtii. The metabolic route chosen for genetic manipulation is the glyoxylate cycle, and the two key enzymes of this cycle, isocitrate lyase (icl) and malate synthase (ms), the targets. The plasmid pSL18 was used as a vector of transformation in the microalgae. Six types of transformant strains were obtained, two of them overexpressing the ms and icl genes separately, two underexpressing these genes and two double transformations, one of them overexpressing both genes at the same time the other one underexpressing them. The strain underexpressing both enzymes at the same time, showed a significant increase in the amount of neutral lipids. In this mutant, the shortage of nitrogen led to an even greater increase in these lipids. While in normal media the difference between the amount of lipids was 1.5 times, under nitrogen starvation the difference was approximately 3 times, corroborated by the difference in gene expression levels, which was also about 3 times. Moreover, the mutant strain also showed an increase in each of the individual fatty acids analyzed, revealing a large amount in all kinds of C16 and C18 fatty acids, important for biodiesel that suits the regulation of Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Although the mutant Dupla-ICL-MS-anti produces higher amounts of lipids compared to the wild type, the strain showed no critical negative effects. Both the production of biomass and the amount of chlorophylla, total protein and total carbohydrates remained stable after the introduction of the mutation. These results suggest that the enzymes of the glyoxylate cycle, which are linked to the catabolism of fatty acids, can be used as promising targets for the optimization of strains already used commercially in the production of biodiesel.
8

Métabolisme lipidique et cycle du glyoxylate chez la levure Yarrowia lipolytica

Kabran-Gnankon, Affoue Philomene 30 September 2010 (has links) (PDF)
La levure Yarrowia lipolytica est une levure oléagineuse capable de croître sur les substrats hydrophobes et les composés en C2 comme seul source de carbonne. La première partie de notre étude a permis de déterminer la localisation des protéines Lro1p et Dga1p impliquées dans la dernière étape de la synthèse des triglycérides. Ces protéines sont localisées dans la membrane cytoplasmique et à la surface des corps lipidique pour Lro1p et à la surface des corps lipidique pour Lro1p et à la surface des corps lipidiques pour dga1p. La deuxième partie de cette étude a permis d'avoir une idée plus précise du fonctionnement du cycle du glyoxylate chez la levure Y. lipolytica. Le premier objectif de cette deuxième partie de notre étude était de comprendre le fonctionnement du gène de la malate déshydrogénase chez cette levure. Contrairement à la levure S. cerevisiae qui possède trois gènes codant pour une malate déshydrogénaze, Y. lipolytica ne possède que deux gènes. Le premier gène YALI0D16753g code une malate déshydrogénase mitochondriale et le second gène YALI0E14190g présente une particularité d'épissage alternatif. En effet, le gène YALI0E14190g, en fonction de l'épissage, code une malate déshydrogénase cytoplasmique (séquence C-terminale PAN) ou une malate déshydrogénase adressée aux peroxysomes (séquence C-terminale AKI). Dans une troisième partie, nous nous sommes intéressés aux autres gènes du cycle du glyoxylate. La disruption du gène ICL1 a entrainé une incapacité de croissance du mutant sur acide oléique et sur les composés en C2 (éthanol, acétate). Néanmoins la suppression MLS et CIT2 n'a pas eu d'impact lors de la croissance sur les milieux nécessitant l'implication cycle du glyoxylate.
9

Utilização das técnicas de engenharia genética e bioquímica em Chlamydomonas reinhardtii visando o aumento da produção de lipídeos para obtenção de biocombustível / Use of genetic and biochemical engineering in Chlamydomonas reinhardtii aiming the increase of the lipid level for biofuel production.

Helena Dias Müller Villela 07 July 2014 (has links)
Os impactos ambientais causados pela queima dos combustíveis fósseis e pela sua manipulação, aliados ao crescente preço dos combustíveis, têm fomentado a procura de novos recursos renováveis e o desenvolvimento de novas tecnologias que suportem as necessidades desse mercado. Os biocombustíveis são recursos biodegradáveis e renováveis, que vêm se revelando uma alternativa economicamente viável. No entanto, a atual geração de biocombustíveis possui alguns pontos negativos, tais como: utilização de solos férteis e competição com a indústria de alimentos, uma vez que utiliza culturas como soja, milho e cana-de-açúcar, produtos de extrema importância econômica para seus países produtores. Por estes motivos, há um crescente interesse em explorar outras matérias-primas possíveis, em especial as voltadas exclusivamente para a geração de energia. Neste contexto, as microalgas vêm se mostrando uma opção bastante interessante. Estes organismos apresentam um alto potencial para tal, pois possuem alta taxa de crescimento e capacidade de produzir grande quantidade de óleo. Além disso, a produção do biocombustível por estes organismos pode ser otimizada tanto pela modificação das condições de cultivo (engenharia bioquímica), como através da manipulação genética das linhagens (engenharia genética). Neste trabalho, ambas as estratégias foram utilizadas com o intuito de se aumentar a quantidade de lipídeo produzido pela linhagem CC424 da microalga modelo Chlamydomonas reinhardtii. A via metabólica escolhida para a manipulação genética foi o ciclo do glioxilato, sendo as duas enzimas-chave desse ciclo, isocitrato liase (icl) e malato sintase (ms), os alvos. O plasmídeo pSL18 foi utilizado como vetor da transformação nas microalgas. Seis tipos de linhagens transformantes foram obtidas: duas delas subexpressando os genes icl e ms separadamente, duas subexpressando esses genes e duas contendo duplas transformações, ou seja, uma delas subexpressando ambos os genes ao mesmo tempo e a outra superexpressando os mesmos. Quando se subexpressou ambas as enzimas ao mesmo tempo, houve um aumento significativo na quantidade de lipídeos neutros da célula. Além disso, essa linhagem transgênica foi submetida à escassez de nitrogênio, o que acentuou ainda mais esse resultado. Enquanto em meio normal a diferença entre a quantidade de lipídeos foi de 1,5 vezes, em escassez de nitrogênio essa diferença foi de aproximadamente 3 vezes, corroborada pela diferença nos níveis de expressão gênica, que também foi em torno de 3 vezes. Além disso, a linhagem transgênica também mostrou um aumento em cada um dos ácidos graxos analisados individualmente, revelando uma grande quantidade de todos os tipos de C16 e C18, ácidos graxos importantes para que o biodiesel se adeque ao regulamento da Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Apesar de maior quantidade de lipídeos em relação à linhagem selvagem, a nova linhagem transgênica Dupla-ICL-MS-anti não mostrou nenhum efeito deletério crítico. Tanto a produção de biomassa, quanto a quantidade de clorofila a, proteínas totais e carboidratos totais se mantiveram estáveis após a introdução da mutação. Esses resultados sugerem que as enzimas do ciclo do glioxilato, sabidamente ligadas ao catabolismo de ácidos graxos, podem ser utilizadas como alvos promissores para a otimização de linhagens já utilizadas comercialmente na produção de biodiesel. / The environmental impacts caused by gases emitted from burning fossil fuels and their manipulation, combined with rising fuel prices, has stimulated demand for new renewable resources and developing new green technologies that support the industry and market needs. Biofuels are biodegradable and renewable resources, which come out to be an economically viable alternative. However, the current generation of biofuels has some disadvantages, such as: use of fertile soils and competition with the food industry, once it uses crops such as soybeans, corn and sugar cane, products of extreme economic importance to the producing countries. For these reasons, there is a growing interest in exploring other possible raw materials, especially those that are geared exclusively for power generation. In this context, microalgae have shown to be a very interesting option. These organisms have a high potential because they have fast growth rate and the ability to produce large amounts of oil. In addition, biofuel production by these organisms can be optimized for both the modification of culture conditions (biochemical engineering), and through the genetic manipulation of microalgae strains (genetic engineering). In this work, the two strategies have been used in order to increase the amount of lipid produced by the strain CC424 from the model organism Chlamydomonas reinhardtii. The metabolic route chosen for genetic manipulation is the glyoxylate cycle, and the two key enzymes of this cycle, isocitrate lyase (icl) and malate synthase (ms), the targets. The plasmid pSL18 was used as a vector of transformation in the microalgae. Six types of transformant strains were obtained, two of them overexpressing the ms and icl genes separately, two underexpressing these genes and two double transformations, one of them overexpressing both genes at the same time the other one underexpressing them. The strain underexpressing both enzymes at the same time, showed a significant increase in the amount of neutral lipids. In this mutant, the shortage of nitrogen led to an even greater increase in these lipids. While in normal media the difference between the amount of lipids was 1.5 times, under nitrogen starvation the difference was approximately 3 times, corroborated by the difference in gene expression levels, which was also about 3 times. Moreover, the mutant strain also showed an increase in each of the individual fatty acids analyzed, revealing a large amount in all kinds of C16 and C18 fatty acids, important for biodiesel that suits the regulation of Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Although the mutant Dupla-ICL-MS-anti produces higher amounts of lipids compared to the wild type, the strain showed no critical negative effects. Both the production of biomass and the amount of chlorophylla, total protein and total carbohydrates remained stable after the introduction of the mutation. These results suggest that the enzymes of the glyoxylate cycle, which are linked to the catabolism of fatty acids, can be used as promising targets for the optimization of strains already used commercially in the production of biodiesel.
10

Estudo dos efeitos tóxicos de antraceno sobre a microalga Chlamydomonas reinhardtii / Study of toxic effects of anthracene on microalgae Chlamydomonas reinhardtii

Stefanello, Eliezer 13 October 2015 (has links)
A produção e emissão de poluentes é geralmente derivada da alta atividade humana, por meio da utilização dos recursos naturais, desenvolvimento de infraestrutura e construção, atividades agrícolas, desenvolvimento industrial, urbanização, turismo e uma série de outras atividades. Poluente é tudo o que é introduzido pelo homem, de forma direta ou indireta, de substâncias ou energia que resultem ou possam resultar em efeitos adversos a vida. As principais classes de poluentes são os pesticidas, poluentes orgânicos, nutrientes, óleos, isótopos radioativos, metais pesados, patogênicos, sedimentares, lixo e escombros entre outros. O descarte em efluentes aquáticos é uma prática antiga no modo como lidamos com nossos dejetos e em consequência disso, a maioria dos ambientes aquáticos encontram-se poluídos em maior ou menor grau. Dentre os poluentes orgânicos, encontramos uma classe de moléculas denominadas de hidrocarbonetos policíclicos aromáticos (HPA). Os HPAs são uma grande família de compostos derivados da fusão de anéis benzênicos que contém dois anéis benzeno fundidos e seus derivados, até estruturas contendo 10 anéis. A toxicidade dos HPAs é resultado de sua hidrofobicidade. Estes compostos podem induzir mudanças conformacionais na estrutura de biomembranas resultando em aumento em sua permeabilidade. Como consequência, a capacidade fotossintética desses organismos é prejudicada podendo levar a sérios distúrbios na cadeia de transporte de elétrons e desacoplamento da fosforilação oxidativa. O Antraceno (ANT) é uma molécula formada pela fusão de 3 anéis benzênicos e é um dos 16 HPAs prioritários segunda a US EPA, e é classificado como muito tóxico para organismos aquáticos e que pode causar efeitos adversos de longo prazo no ambiente aquático. Além disso, ANT é facilmente fotoxidado a produtos ainda mais tóxicos, especialmente quinonas, que interferem na respiração e na fotossíntese, causando problemas no desenvolvimento das algas levando a falência do ecossistema devido à diminuição da biomassa, deficiência de oxigênio e inibição de processos de desintoxicação. A quantidade de informações referentes aos efeitos causados ao metabolismos destes organismos fotossintetizantes é bastante limitada e para suprir esta carência, utilizamos a microalga modelo Chlamydomonas reinhardtii com a finalidade de ampliar o conhecimento dos efeitos tóxicos de antraceno no metabolismo destes organismos utilizando uma abordagem de metabolômica que utiliza GC-MS. Como resposta metabólica a exposição de ANT, ácidos graxos acumularam em C. reinhardtii. De forma semelhante, outra resposta encontrada foi acumulo de aminoácidos. Com exceção de valina, todos os aminoácidos encontrados em nossa análise por GC-MS se acumularam nas culturas expostas a ANT. Outra molécula importante encontrada em nossas análises foi a glutationa, possivelmente causada pela produção de EROs. Muitos ácidos carboxílicos foram encontrados em nossas análises e entre estes, a via metabólica mais impactada foi o ciclo do glioxilato. Juntamente com acumulo de glioxilato, muitos intermediários do ciclo do ácido cítrico foram encontrados tais como succinato e malato. Para tanto, o acumulo de malato é dependente de glioxilato e acetato, presente no meio de cultura. O produto deste gene catalisa a reação entre glioxilato e acetil-CoA formando malato como produto final. Com estes dados, podemos sugerir que para compensar pela fotossíntese deficiente, o metabolismo heterotrófico de acetato produzindo acetil-CoA é uma fonte importante de energia, e a via de glioxilato tem um papel central durante o estresse causado por ANT. Além disso, a incorporação de carbonos através do ciclo do glioxilato pode permitir a síntese de outras moléculas mais complexas como aminoácidos, lipídeos e carboidratos. / The production and emission of pollutant are often derived from human activities, such as utilizing natural resources, developing infrastructure, agriculture and industry among others. Pollutant is defined as substances or energy introduced into the environment by man, directly or indirectly that may result in adverse effects on life. Pollutants can be divided into various classes including organic, nutrients, oils, radioactive isotopes, heavy metals, pathogenic, sediments, garbage among others. Disposal of sewage on water bodies is an old habit of how we deal with our wastes. Consequently, great part of the aquatic environment becomes polluted in various extents. Among the organic pollutants, polycyclic aromatic hydrocarbons (PAH) represents a class of molecules consisting from two or more fused benzene rings and its by-products. Members of this class of compounds have been identified as exhibiting toxic and hazardous properties. Their toxicity is also due to its hydrophobic property that induces conformational changes on membranes, increasing their permeability. Consequently, the photosynthetic capacity of exposed organisms can be harmed, leading to serious imbalances on their electron chain transport and uncoupling oxidative phosphorylation. Anthracene (ANT) is a PAH formed by three fused benezenic rings and is one of the 16 prioritary PAH according to American and European regulatory agencies. ANT is classified as highly toxic for aquatic organisms causing long term effects on environment. Besides, ANT can be easily photooxidated and its products can be even more toxic, specially quinones, that can interfere on respiration and photosynthesis, leading to problems on algae development and ecosystem collapse caused by low biomass, oxygen deficiency and inhibition of detoxification processes. The amount of information about the effects on metabolism of the photosynthetic organisms is limited. Therefore our main goal was to use the model organism Chlamydomonas reinhardtii in order to gain insights on the toxic effects caused by ANT through GC-MS metabolomics approach. A metabolic response to ANT exposure, lipid accumulates in C. reinhardtii. Similarly to fatty acids, another marked physiological response was amino acids accumulation. With the exception of valine, all amino acids found in our GC-MS analysis showed a marked relative accumulation in cultures exposed to ANT. Another important finding was the high level of glutathione, possibly caused by ROS production. Carboxylic acids were also found in our analysis and among them a highly impacted pathway found was glyoxylate cycle. Toghether with the increase accumulation of glyoxylate, many TCA cycle intermediates, like succinate and malate were found. Furthermore, malate accumulation is dependent of glyoxylate and acetate, present in culture media. The product of this gene catalyse the reaction between glyoxylate and acetyl-CoA forming malate as a final product. Taken all together, our findings suggest that to compensate the photosynthesis inhibition, heterotrophic acetate metabolism was activated producing acetyl-CoA an important energy source, and glyoxylate cycle plays a central role during stress caused by ANT. Furthermore, incorporation of carbon through glyoxylate cycle can enable synthesis of more complex molecules like amino acids, lipids and carbohydrates.

Page generated in 0.0699 seconds