• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • Tagged with
  • 16
  • 16
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-function studies of the peroxisomal multifunctional enzyme type 2 (MFE-2)

Ylianttila, M. (Mari) 29 November 2005 (has links)
Abstract Multifunctional enzyme type 2 (MFE-2) catalyses the second and the third reactions in the eukaryotic peroxisomal β-oxidation cycle, which degrades fatty acids by removing a two-carbon unit per each cycle. In addition to the 2-enoyl-CoA hydratase 2 and (3R)-hydroxyacyl-CoA dehydrogenase activities, mammalian MFE-2 has also a sterol carrier protein type 2-like (SCP-2L) domain. In contrast, yeast MFE-2 has two (3R)-hydroxyacyl-CoA dehydrogenases, one 2-enoyl-CoA hydratase 2 and no SCP-2L domain. The physiological roles of yeast (3R)-hydroxyacyl-CoA dehydrogenases (A and B) were tested by inactivating them in turn by site-directed mutagenesis and testing the complementation of Saccharomyces cerevisiae fox-2 cells (devoid of endogenous MFE-2) with mutated variants of Sc MFE-2. Growth rates were lower for fox-2 cells expressing only a single functional domain than for those expressing the Sc MFE-2. Kinetic studies with purified Candida tropicalis MFE-2 and its mutated variants show that dehydrogenase A catalyzes the reaction more efficiently with the medium- and long-chain substrates than dehydrogenase B, which in turn is the only one active with the short chain fatty acids. The structural basis of the substrate specificity difference of these two dehydrogenases was solved by X-ray crystallography together with docking studies. Protein engineering was used to produce a stabile, homogenous recombinant protein of C. tropicalis dehydrogenases in one polypeptide. The heterodimeric structure contains the typical fold of the short-chain alcohol dehydrogenase/reductase (SDR) family. Docking studies suggest that dehydrogenase A binds medium chain-length substrates as bended, whereas short chain substrates are dislocated, because they do not reach the hydrophobic contacts needed for anchoring the substrate to the active site, but are instead attracted by L44. Dehydrogenase B has a more shallow binding pocket and thus locates the short chain-length substrates correctly for catalysis. Thus the data provide clues for structural basis of the different substrate specificities. The molecular basis of the patient mutations of MFE-2 (DBP deficiency) was studied using the recently solved crystal structures of rat (3R)-hydroxyacyl-CoA dehydrogenase, human 2-enoyl-CoA hydratase and SCP-2L. The predicted effect of the mutations on protein structure could in several cases be explained, and these data supported the conclusion that a genotype-phenotype correlation exists for DBP deficiency.
2

Structural studies on the enzymatic units of the peroxisomal multifunctional enzyme type 2 (MFE-2)

Koski, K. (Kristian) 26 October 2004 (has links)
Abstract Multifunctional enzyme type 2 (MFE-2) is a peroxisomal enzyme participating in the breakdown of fatty acids in eukaryotes. Depending on the organism, MFE-2 is composed of two to four functional units, out of which the two enzymatic ones, 2-enoyl-coenzyme A (CoA) hydratase 2 and (3R)-hydroxyacyl-CoA dehydrogenase, are found in the all MFE-2s. These units are responsible for the catalysis of the second and third steps of the peroxisomal β-oxidation of various CoA thioesters of fatty acids and fatty acyl derivatives. Their (R)-stereospecificity and ability to accept a broad range of fatty acid CoA esters as substrates, in addition to the fact that they do not share any sequence similarity with the classical mitochondrial counterparts, make the enzymatic units of MFE-2 structurally very interesting. In this study, the three-dimensional structures of the (3R)-hydroxyacyl-CoA dehydrogenase and 2-enoyl-CoA hydratase 2 units were solved by crystallographic methods. The crystal structure of the (3R)-hydroxyacyl-CoA dehydrogenase unit of rat MFE-2 reveals a dimeric enzyme with an α/β short-chain alcohol dehydrogenase/reductase (SDR) fold. A unique feature of (3R)-hydroxyacyl-CoA dehydrogenase, however, is the separate C-terminal domain, which completes the active site cavity of the adjacent monomer and extends the dimeric interactions. The 2-enoyl-CoA hydratase 2 unit is a dimer with a unique two-domain structure proposed to evolve via gene duplication. The fold consists of two side-by-side arranged repeats of the hot-dog fold motifs, thus being highly reminiscent of the tertiary structures of the (R)-specific 2-enoyl-CoA hydratase of the polyhydroxyalkanoate synthesis pathway and the β-hydroxydecanoyl thiol ester dehydrase of fatty acid synthesis type II, both from prokaryotic sources. The importance of the N-domain in the binding of bulky substrates was shown by the enzyme-product complex structure, which also indicates the active site. For the first time, it was shown that the eukaryotic hydratase 2 uses an Asp/His catalytic dyad in catalysis. Moreover, a novel catalytic mechanism was proposed for (R)-specific hydration/dehydration. The solved structures also provide a molecular basis for understanding the effects of the patient mutations of MFE-2. They also allow disussion of the possible organisation of the three units in full-length MFE-2 of mammals.
3

Modeling a Reversed β-oxidation Cycle Into the Genome Scale Model of Zymomonas mobilis

Dash, Satyakam 16 September 2013 (has links)
This study proposes simulations which present optimized methods for producing fatty acids, fatty alcohols and alkanes using Zymomonas mobilis bacterium by the energy efficient β-oxidation reversal pathway, an eco-friendly alternative to the present petroleum based processes. Zymomonas has advantages of higher carbon intake, higher ethanol tolerance and higher ethanol production efficiency than other organisms. I have improved an earlier Zymomonas genome scale model and used Constraint Based Reconstruction and Analysis (COBRA), a linear optimization based computational tool in Matlab, and to perform flux balance analysis (FBA) based simulations. FBA accounts for formation, consumption, accumulation and removal rate or flux of each metabolite. The results present solution spaces of cell growth rate and product formation rate, which trend with products and their carbon chain length. I have analyzed these solution space trends gaining insight into the Zymomonas’ metabolism, enabling efficient product formation and opening a way for future improvement.
4

Metabolomic study of the effects of perfluorinated compounds on the fatty acid metabolism during the development of Gallus gallus domesticus

Wigh, Viktoria January 2017 (has links)
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are two commonly found contaminants associated with various manufacturing products, such as firefighting foam, non-stick coatings, electronics and water repellants. These compounds are persistent, bioaccumulative, and toxic and may therefore pose a serious health risk to living organisms. Earlier studies have shown that PFOS and PFOA affected the fatty acid β-oxidation, i.e. the energy metabolism in liver. This study evaluates the effects of PFOS and PFOA on fatty acid metabolism in domestic chicken liver cells.  Liver tissues were obtained from chicken embryos treated in ovo with PFOS or with PFOA at low (0.1 µg/g) and high (1.0 and 1.6 µg/g) concentration levels. The fatty acids were extracted and derivatized into fatty acid methyl esters (FAMEs). The analysis was conducted by gas chromatography coupled with mass spectrometry. Results showed that a lower concentration of PFOS and a lower percentage of DMSO significantly affected the concentrations of fatty acids in livers of chicken embryos. PFOA-treated samples also showed some significant elevated fatty acid concentrations. Almost all fatty acid concentrations of treated liver samples exceeded the concentrations of the untreated samples.
5

Enoyl thioester reductases—enzymes of fatty acid synthesis and degradation in mitochondria

Miinalainen, I. (Ilkka) 07 November 2006 (has links)
Abstract Fatty acids are one of the most essential categories of biological lipids and their synthesis and degradation are vital for all organisms. Severely compromised phenotypes of yeast mutants and human patients, which have defective components in their degradative or synthetic processes for fatty acid metabolism, have highlighted the importance of these processes for overall metabolism. Most fatty acids are degraded by β-oxidation, which occurs in mitochondria and peroxisomes in mammals, whereas synthesis is catalyzed by cytosolic multifunctional peptides, although a synthesis system involving individual enzymes in mitochondria has been also proposed. In this study a novel mitochondrial 2-enoyl thioester reductase Etr1p from the yeast Candida tropicalis, its homolog Mrf1p from Saccharomyces cerevisiae, and their mammalian ortholog were identified and characterized. Observations indicating that mitochondrial localization as well as enzymatic activity is needed to complement the respiratory-deficient phenotype of the mrf1Δ strain from S. cerevisiae suggests that Etr1p and Mrf1p might act as a part of the mitochondrial fatty acid synthesis machinery, the proper function of which is essential for respiration and the maintenance of mitochondrial morphology in yeast. The mammalian enzyme, denoted Nrbf-1p, showed similar localization, enzymatic activity, and ability to rescue the growth of the mrf1Δ strain suggesting that mammals are also likely to possess the ability and required machinery for mitochondrial fatty acid synthesis. This study further included the characterization of another mitochondrial thioester reductase, 2,4-dienoyl-CoA reductase, which acts as an auxiliary enzyme in the β-oxidation of unsaturated fatty acids. The function of this gene was analyzed by creating a knock-out mouse model. While unstressed mice deficient in 2,4-dienoyl-CoA reductase were asymptomatic, metabolically challenged mice showed symptoms including hypoglycemia, hepatic steatosis, accumulation of acylcarnitines, and severe intolerance to acute cold exposure. Although the oxidation of saturated fatty acids proceeds normally, the phenotype was in many ways similar to mouse models of the disrupted classical β-oxidation pathway, except that an altered ketogenic response was not observed. This mouse model shows that a proper oxidative metabolism for unsaturated fatty acids is important for balanced fatty acid and energy metabolism.
6

Production d'arômes par fermentation en milieu solide / Aroma production by solid state fermentation

Try, Sophal 25 May 2018 (has links)
La transposition d’un milieu liquide (FML) à un milieu solide (FMS) de la production de γ-décalactones par fermentation par Yarrowia lipolytica a été étudiée pour la première fois. Dans un premier temps, différentes matrices solides (rafles de maïs, éponges de cellulose, éponges de courgette et graines de ricin) ont été utilisées. L'éponge de courgette était le support sur lequel les lactones étaient produites aux concentrations les plus élevées. La production de lactones a donc été réalisée sur ce support et dans trois types de réacteurs FMS sous différentes conditions d’aérations (sans aération, avec aération statique et avec aération forcée). Une concentration élevée de 5 g/L d’hydroxy-lactone a été détectée dans la condition d’aération statique en fiole à col large. Une certaine concentration de lactones était entrainée lors de l’aération forcée au cours de la production en mini-réacteur. Pour calculer la production totale de lactones dans cette condition, un modèle mathématique a été utilisé pour modéliser les pertes. Par ailleurs, un nouveau procédé par injection d’air enrichi en oxygène (20 %, 30 %, 40 % et 50 %) a été mis en place pour étudier les effets de l’oxygène sur la β-oxydation chez Y. lipolytica. Dans cette partie, les résultats ont montré que l’oxygène est nécessaire pour la production d’hydroxy-lactone et la dégradation de γ-décalactone mais pas pour la dernière étape de production de cette dernière. Dans la dernière partie de ce travail, l’effet de l’activité de l’eau (Aw) a été étudié préliminairement sur la croissance en milieu gélosé, et pour la croissance et la production de lactone en FML. / The adaptation of the production of γ-decalactones from submerged fermentation (SmF) to solid state fermentation (SSF) by Yarrowia lipolytica was investigated in this work. First of all, different solid matrices (corncob, cellulose sponge, luffa sponge, and castor seeds) were used for the first adaptation of the production of γ-décalactones. Luffa sponge appeared to be the most interesting solid support on which lactones were produced in higher concentrations than in the other solid matrices used. Then, the production of lactones using luffa sponge as the solid support was carried out in three types of SSF reactors to monitor different aeration conditions (without aeration, with a static aeration and with a forced aeration). A 5 g/L-high concentration of hydroxy-lactone was detected in the condition of static aeration using wide-mouth Erlenmeyer flasks. Furthermore, a concentration of lactones was stripped when forced aeration was used during the production using mini-reactors. To calculate the total production of lactones in this case, a mathematical model was used to evaluate the losses. Moreover, a novel alternative process using oxygen-enriched air (20%, 30%, 40% and 50%) was employed to study the effect of oxygen on β-oxidation in Y. lipolytica. In this part, the results showed that oxygen is required for hydroxy-lactone production and γ-decalactone degradation but not for the last step of production of this latter lactone. In the last part of this work, the effect of water activity (Aw) was preliminary studied on growth in agar medium, and for growth and lactone production in SmF.
7

Peroxisomal multifunctional enzyme type 2 (MFE-2):the catalytic domains work as independent units

Haataja, T. (Tatu) 15 November 2011 (has links)
Abstract Lipids are necessary for living organisms and have various roles as, energy sources, hormone precursors and as components of membrane structures. Fatty acid β-oxidation is a pathway of energy metabolism, in which the fatty acyl-CoAs are degraded in several steps. Peroxisomal β-oxidation systems are found in all eukaryotes studied thus far, but the existence of a mitochondrial system is established in mammals only. Multifunctional enzyme type 2 (MFE-2) has been characterized from various species and is responsible for catalyzing the second and third steps in the R-specific peroxisomal β-oxidation pathway. MFE-2 accepts a wide range of substrates and displays great variation in domain organization and overall molecular mass. The crystal structures of individual domains of MFE-2 from several species have been determined previously. In this study, the structural knowledge of MFE-2 is further extended from the domain level to the assembly of the full-length enzyme. The crystal structure of Drosophila melanogaster MFE-2 (DmMFE-2) was solved at 2.15 Å resolution. The enzyme is a homodimer with 3R-hydroxyacyl-CoA dehydrogenase and 2E-enoyl-CoA hydratase 2 activities residing on each of the polypeptide subunits. Kinetic data combined with information from the structure, suggest that the catalytic domains of DmMFE-2 work as separate entities. It also appears that the enzyme does not assemble into dimers in vitro when the catalytic subunits are introduced in a solution as stand-alone proteins. The data were confirmed by two different methods, static light scattering and small-angle X-ray scattering. However, the primary use of SAXS was not to monitor the formation of dimers in solution, but instead it was used for structure determination of the human MFE-2. During the process, the structural information from DmMFE-2 was used as a scaffold for the human homolog. After collecting a wide range of SAXS data and numerous calculations, a plausible low resolution solution structure of human MFE-2 was obtained. The model reveals the overall assembly of the enzyme and the locations of the C-terminal SCP-2L domains (an unspecific lipid carrier), thus enabling further hypotheses regarding the possible role of the SCP-2L domain in the enzymatic reaction. / Tiivistelmä Lipidit eli rasva-aineet ovat välttämättömiä eliöille ja niillä on lukemattomia rooleja mm. energianlähteinä, kalvojen rakenteina ja hormonien esiasteina. Rasvahappoja hajotetaan monivaiheisella metaboliareitillä, jota kutsutaan β-oksidaatioksi. Peroksisomaalinen rasvojen hajotusreitti on löydetty kaikista tähän asti tutkituista aitotumallisista, mutta mitokondrioissa tapahtuva rasvojen β-oksidaatio on löydetty vain nisäkkäiltä. Peroksisomaalinen monitoiminen entsyymi tyyppi 2 (MFE-2) katalysoi toisen ja kolmannen reaktion R-spesifisellä rasvahappojen hajotusreitillä ja se on karakterisoitu useilta eri lajeilta. MFE-2 muodostaa lajista riippuen hyvin erilaisia ja molekyylimassaltaan erikokoisia alayksikköyhdistelmiä, jotka pystyvät katalysoimaan erityyppisten substraattien hapetuksen. Eri lajien MFE-2:n yksittäisten alayksiköiden kiderakenteet ovat olleet tunnettuja jo vuosia. Tässä tutkimuksessa rakennetietämys laajenee MFE-2:n osalta alayksikkötasolta kokopitkän entsyymin tasolle, sillä banaanikärpäsen MFE-2:n (DmMFE-2) kiderakenne selvitettiin 2.15 ångströmin erotuskyvyllä. Tämä homodimeerinen entsyymi kantaa samassa polypeptidissä sekä 3R-hydroksiasyyli-KoA-dehydrogenaasi, että 2E-enoyyli-KoA-hydrataasi 2 -aktiivisuuksia. Kiderakenteen ja reaktiokinetiikan perusteella tehtiin johtopäätös, jonka mukaan DmMFE-2:n alayksiköt toimivat itsenäisinä kokonaisuuksinaan. Staattisen valonsironnan (SLS) ja röntgenpienkulmasirontamittauksien (SAXS) perusteella MFE-2:n erillisinä tuotetut alayksiköt eivät muodosta liuoksessa spontaanisti kokopitkän MFE-2:n kaltaisia oligomeerejä. Ihmisen MFE-2:n alhaisen erotuskyvyn malli määritettiin röntgenpienkulmasirontatekniikan avulla. Tässä prosessissa käytettiin hyväksi banaanikärpäsen entsyymin tarjoamaa rakennetietoa, jonka perusteella rakennettiin ensin runko ihmisen MFE-2:lle. Monivaiheisen prosessin jälkeen saatiin lopulta laskettua vakuuttava malli, joka paljastaa ensimmäistä kertaa ihmisen kokopitkän MFE-2:n rakenteen ja antaa mahdollisuuden tehdä alustavia johtopäätöksiä karboksiterminaalisen lipidejä epäspesifisesti sitovan alayksikön (SCP-2L) biologisesta roolista osana tätä monitoimista entsyymiä.
8

Protein crystallographic studies of CoA-dependent proteins: new insight into the binding mode and exchange mechanism of acyl-CoA

Taskinen, J. (Jukka) 25 April 2006 (has links)
Abstract Multifunctional enzyme type 1 (MFE-1) is a monomeric member of the hydratase/isomerase superfamily (H/I) involved in the β-oxidation of fatty acids. MFE-1 has 2-enoyl-CoA hydratase-1, Δ3-Δ2-enoyl-CoA isomerase, and several other enoyl-CoA isomerase activities at the N-terminus. The C-terminus has (3S)-hydroxyacyl-CoA dehydrogenase activity. MFE-1 can also convert certain hydroxylated C27 bile acid synthesis intermediates. In these studies, a domain assignment of MFE-1 by sequence alignment with the H/I family (domains A and B in MFE-1) and mitochondrial monofunctional 3-hydroxyacyl-CoA dehydrogenases (HAD, domains C, D and E) was proposed. This was further improved with the structural information obtained from the crystal structure of the construct containing domains B, C, D and E (MFE1-DH). The structure of MFE1-DH resembles the bilobal structure of the α-subunit of the bacterial fatty acid metabolising complex and the mammalian HAD enzyme. The N-terminal linker helix of MFE1-DH (domain B) corresponds to helix-10 of the hydratase/isomerase enzymes having residues important for substrate contacts. Domain C adopts the classical Rossmann fold and forms the first lobe of the MFE1-DH structure. The C-terminal domains D and E form the second lobe and have local symmetry between each other. This local symmetry corresponds to the D domain-mediated dimerisation of the HAD dimer. The domain deletion studies showed that the presence of domains D and E, but not domain C, was essential to obtain a functional hydratase 1 enzyme; this can be understood from stabilising contacts from domain E to the linker helix, as seen in the MFE1-DH structure. The structure of human ACBP from liver was determined with and without a physiological ligand. This structure adopts the classical four-helix bundle of the ACBP family. The ligand binding mode seen in the presence of myristoyl-CoA shows that one ligand molecule is bound jointly by the two protein molecules of the asymmetric unit such that the fatty acid tail is bound by one protein molecule, and the 3'-phosphate AMP moiety of the CoA is bound by the other protein molecule, essentially as in known complexed ACBP structures in the monomeric binding mode. The observed ligand binding mode suggests a new model for the ACBP-mediated ligand transfer observed in biochemical in vitro studies. / Tiivistelmä Tyypin 1 monitoiminen entsyymi (MFE-1) on hydrataasi/isomeraasiperheen (H/I) jäsen ja se osallistuu rasvahappojen β-oksidaatioon. MFE-1:n N-päädyssä on 2-enoyyli-CoA-hydrataasi 1- ja Δ3-Δ2-enoyyli-CoA-isomeraasiaktiivisuus sekä useita muita enoyyli-CoA-isomeraasiaktiivisuuksia. C-päädyssä on (3S)-hydroksiasyyli-CoA-dehydrogenaasiaktiivisuus. MFE-1 voi myös katalysoida tiettyjen hydroksyloitujen C27-sappihapposynteesin välituotteiden reaktioita. Tässä tutkimuksessa määritettiin MFE-1:n domeenirakenne H/I-perheen (MFE-1:n domeenit A ja B) ja 3-hydroksiasyyli-CoA-dehydrogenaasiperheen (HAD, domeenit C, D ja E) sekvenssilinjausten perusteella. Rakennetta tarkennettiin domeenit B, C, D ja E sisältävän konstruktin (MFE1-DH) kiderakenteesta saadun tiedon avulla. MFE1-DH:n kiderakenne muistuttaa bakteerien rasvahappoja hajottavan kompleksin α-alayksikön sekä nisäkkäiden HAD-entsyymin kahdesta alayksiköstä muodostuvaa rakennetta. MFE1-DH:n N-päädyn α-kierre vastaa H/I-entsyymien kierre-10:tä, jossa sijaitsee substraattikontaktien kannalta tärkeitä aminohappotähteitä. C-domeeni muodostaa Rossmann-laskoksen ja se on MFE1-DH:n rakenteen ensimmäinen alayksikkö. C-päädyssä sijaitsevat D- ja E-domeenit muodostavat yhdessä toisen alayksikön ja niiden välillä on symmetria, joka vastaa D-domeenien välittämää HAD-entsyymien dimerisaatiota. Domeenitutkimukset osoittivat, että D- ja E-domeenien läsnä olo oli välttämätöntä hydrataasi 1:n toiminnalle, mutta C-domeeni voitiin poistaa ja säilyttää hydrataasi 1 -aktiivisuus. Havainto voitiin selittää MFE1-DH:n rakenteen avulla, jossa nähdään stabiloivia vuorovaikutuksia E-domeenin ja N-päädyn α-kierteen välillä. Ihmisen maksan ACBP:n kiderakenne määritettiin fysiologisen ligandin kanssa sekä ilman ligandia. Tämä rakenne laskostuu ACBP-perheelle tyypilliseksi neljän kierteen nipuksi. Myristoyyli-CoA:n läsnä ollessa havaitussa ligandin sitoutumistavassa yksi ligandimolekyyli on sitoutunut kahden proteiinimolekyylin välille siten, että rasvahappo-osa sitoutuu toiseen proteiinimolekyyliin ja CoA:n 3'-fosfaatti-AMP-osa sitoutuu toiseen proteiinimolekyyliin kuten tunnetuissa monomeerisissä ACBP:n sitomistavoissa. Havaitun sitoutumisen avulla voidaan ehdottaa uutta mallia ACBP:n välittämälle ligandinsiirrolle, joka on havaittu aikaisemmin biokemiallisissa in vitro -tutkimuksissa.
9

Etude fonctionnelle de la β-oxydation chez la levure pathogène opportuniste Candida lusitaniae : caractérisation d’une voie mitochondriale et peroxysomale Fox2p-dépendante et mise en évidence d’une voie peroxysomale alternative Fox2p-indépendante de catabolisme des acides gras / Functional study of fatty acid β-oxidation in the opportunistic pathogen yeast Candida lusitaniae : characterization of a mitochondrial and a peroxisomal Fox2p-dependant pathway and evidences for an alternative peroxisomal Fox2p-independent pathway for fatty acid catabolism

Gabriel, Frédéric 15 December 2011 (has links)
Les levures Candida sont des pathogènes opportunistes émergents. Après phagocytose macrophagique, C. albicans reprogramme son métabolisme pour faire face à une carence carbonée et induit 2 voies métaboliques, le cycle du glyoxylate et la β-oxydation. Notre objectif est d’étudier le lien entre β-oxydation, capacité de résistance à la phagocytose et virulence dans notre modèle biologique C. lusitaniae. Chez les levures Ascomycètes la β-oxydation, essentielle pour dégrader les acides gras (AG), est présumée être exclusivement peroxysomale.Nous avons construit 3 mutants nuls chez C. lusitaniae : icl1Δ, fox2Δ et pxa1Δ, respectivement défectifs pour l’isocitrate lyase (enzyme clé du cycle du glyoxylate), pour la protéine multifonctionnelle de la β-oxydation et pour une protéine responsable de l’import peroxysomal des AG à longue chaîne. L’étude de l’assimilation des AG et du catabolisme du 14Calpha-palmitoyl-CoA a révélé que les acyl-CoA à longue chaîne étaient toujours dégradés chez fox2Δ. L’étude du catabolisme des AG dans les fractions peroxysomale et mitochondriale des souches sauvage et fox2Δ, l’immunolocalisation de la protéine Fox2p et la mesure de la respiration mitochondriale nous ont permis de montrer pour la première fois chez une levure Ascomycète l’existence d’une β-oxydation Fox2p-dépendante dans la mitochondrie. C’est aussi la première démonstration chez un organisme eucaryote de la double localisation peroxysomale et mitochondriale de Fox2p. L’invalidation des gènes FOX1 et FOX3 (acyl-CoA oxydase et kétoacyl-CoA thiolase) a confirmé pour la première fois chez les champignons l’existence d’une voie peroxysomale alternative de catabolisme des AG, Fox2p-indépendante / The Candida spp. are emerging opportunistic pathogens. Phagocytic cells are a primary line of defense against these opportunistic pathogens. Upon phagocytosis by macrophages, C. albicans reprograms its metabolism because genes involved in the peroxisomal metabolism, such as glyoxylic acid cycle and beta-oxidation pathway, are overexpressed. The objective of this study was to study the relation between fatty acid beta-oxidation, resistance to phagocytosis and virulence in the biological model Candida lusitaniae. In ascomycetous yeasts, the fatty acid β-oxidation is assumed to be exclusively located to peroxisomes.We constructed three null-mutants in C. lusitaniae: icl1Δ, fox2Δ et pxa1Δ, respectively lacking the isocitrate lyase (a key enzyme of the glyoxylate cycle), the multifunctional fatty acid beta-oxidation protein (essential in C. albicans to the β-oxidation pathway), and a protein involved in the peroxisomal import of long-chain fatty acids. The study of fatty acid assimilation and 14Calpha-palmitoyl-CoA catabolism revealed that long-chain fatty acids were still catabolized in fox2Δ. The observation of 14Calpha-palmitoyl-CoA catabolism in mitochondrial and peroxisomal fractions of wild-type and fox2Δ strains, the immunolocalization of Fox2p and mitochondrial respiration measurements yielded to the first demonstration in ascomycetous yeast of a mitochondrial Fox2p-dependent fatty acid β-oxidation pathway. We also demonstrated for the first time in Eucaryota that Fox2p co-localized in both peroxisomes and mitochondria. The invalidation of FOX1 and FOX3 genes (acyl-CoA oxidase and ketoacyl-CoA thiolase, respectively) confirmed for the first time in Fungi the existence of an alternative peroxisomal pathway for fatty acid catabolism, Fox2p-independently.
10

Impact de la citrulline sur le métabolisme du tissu adipeux / Citrulline effect on adipose tissue metabolism

Joffin, Nolwenn 29 January 2015 (has links)
L’obésité s’accompagne de pathologies comme le diabète de type 2 et les maladies cardiovasculaires, liées à des dérégulations métaboliques et endocriniennes du tissu adipeux blanc (TAB). Au cours du vieillissement, la perte de masse musculaire peut être associée à l’obésité et définit le concept d’obésité sarcopénique. Les traitements mis en œuvre pour contrecarrer ces pathologies n’ont qu’un succès très partiel. Il est donc opportun de développer des stratégies alternatives originales qui pourraient aboutir à des thérapeutiques ciblées. Notre équipe étudie les régulations métaboliques du TAB, source majeure de stockage de l’énergie de l’organisme. Les triglycérides stockés sont libérés à jeun grâce à la lipolyse qui libère les acides gras non-estérifiés (AGNE) et le glycérol dans le sang, comme source d’énergie des autres tissus. En plus de la β-oxydation des AGNE, leur ré-estérification partielle intervient pour limiter leur libération lors de la lipolyse. La glycéronéogenèse est nécessaire à la ré-estérification en situation de jeûne. Des études préalables ont montré que l'administration de citrulline (CIT) pendant trois mois à des rats vieillissants induit une diminution d’environ 40% de la masse viscérale du TAB. Cet acide aminé non protéique est un complément alimentaire donné au cours du vieillissement ou à des sportifs pour augmenter la masse musculaire. Nous avons étudié les effets de la CIT sur des cultures d’explants de TAB de rats. Dans la première partie de ce travail, nous montrons que la CIT a un effet direct lipolytique et anti-glycéronéogénique sur les explants des rats qu’ils soient jeunes ou âgés. Cependant, la libération des AGNE du TAB des rats jeunes est limitée par une augmentation de la capacité oxydative du tissu. Avec l’âge, la masse du TAB augmente en parallèle à l’augmentation d’un état pro-inflammatoire. Afin de comprendre l’influence de ces deux paramètres indépendamment de l’âge, nous avons étudié dans la deuxième partie de ce travail, les effets de la CIT sur les explants de TAB de rats jeunes soumis à un régime contrôle (CD) ou hyperlipidique (HFD). Nous observons une augmentation, induite par la CIT, de la lipolyse et de la capacité ß-oxydative du TAB des rats quel que soit le régime, alors que la glycéronéogenèse est diminuée. Toutefois, les AGNE sont sélectivement libérés par le TAB de rats HFD, en relation avec une réduction drastique de leur ré-estérification. Le NO est un médiateur de ces effets. Dans une troisième partie, nous démontrons que la CIT agit directement sur le TAB de rats CD et HFD pour induire l'expression de la protéine découplante, UCP1, en lien avec le « brunissement » potentiel du TAB par cet acide aminé. Ces effets ne sont pas observés au sein du TAB des rats âgés. L’ensemble de nos résultats établit les bases pour de futures investigations visant à élucider les mécanismes par lesquels la CIT réduit la masse adipeuse et ouvre de nouvelles perspectives thérapeutiques pour lutter contre le surpoids et l’obésité sarcopénique. / Obesity is frequently associated with type 2 diabetes and cardiovascular diseases, related to metabolic and endocrine dysregulation of white adipose tissue (WAT). During aging, the loss of muscle mass may be associated with obesity and defines the concept of sarcopenic obesity. Treatments implemented to counteract these conditions showed a very partial success. It is therefore appropriate to develop original alternative strategies that could lead to targeted therapies. Our team studies the metabolic regulation of WAT, the major source of energy storage in the body. Non-esterified fatty acids (NEFA) and glycerol are released in the blood from stored triglycerides through lipolysis and used as a source of energy for other tissues. In addition to their β-oxidation, NEFA are re-esterified in part, a process that limits their release in the blood. Glyceroneogenesis is the pathway necessary to NEFA re-esterification in the fasting state. Previous studies showed that administration of citrulline (CIT) for three months to aging rats induced a decrease of approximately 40% of the visceral WAT mass. This non-protein amino acid is given as a dietary supplement during aging or sports to increase muscle mass. We studied the effects of CIT on explant cultures of rat WAT. In the first part of this work, we show that CIT exerts a direct lipolytic and anti-glyceroneogenic effect on explants from rats whether young or old. However, the release of NEFA from the explants of young rats is limited by an increase in the oxidative capacity of the tissue. During aging, WAT mass augments in parallel to the increase in a pro-inflammatory state. To understand the influence of these two parameters regardless of age, we studied in the second part of this work, the effects of CIT on WAT explants from young rats fed a control (CD) or high fat (HFD) diet. We show an CIT-induced increase in lipolysis and beta-oxidative capacity of WAT from rats whatever the diet, while glyceroneogenesis is reduced. However, NEFA are selectively released from WAT of HFD rats, in connection with a drastic reduction of their re-esterification. NO is a mediator of these effects. In the third part of this work, we show that CIT acts directly on WAT from CD and HFD rats to induce the expression of uncoupling protein, UCP1, in line with the potential "browning" of WAT by this amino acid. These effects were not observed in explants from old rats. Altogether our results establish the basis for future investigations aimed at elucidating the mechanisms by which CIT reduces body fat and open new therapeutic perspectives to fight overweight and sarcopenic obesity.

Page generated in 0.479 seconds