• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 12
  • 9
  • 5
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 92
  • 92
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Interação da proteína albumina do soro bovino (BSA) com substratos sintéticos / Interaction of the protein bovine serum albumin (BSA) with synthetic substrates.

Ernando Silva Ferreira 19 February 2010 (has links)
A interface formada por materiais biológicos e materiais sintéticos tem grande importância em aplicações biomédicas, tais como o desenvolvimento de biomateriais para implantes médicos, que tem como processo essencial a deposição de proteínas na superfície dos biomateriais, e ainda não é bem compreendido no nível molecular. Algumas proteínas sofrem mudanças conformacionais após a adsorção na interface sólido-líquido, afetando suas funções ou propriedades, e algumas técnicas podem medir mudanças conformacionais em interfaces sólido. É possível estudar a fluorescência intrínseca de proteínas: a posição do máximo na faixa espectral da fluorescência, a eficiência quântica e o tempo de vida de fluorescência são indicadores de mudanças no ambiente local de grupos de moléculas de proteína fluorescente. Por outro lado, Nanopartículas de ouro têm atraído muita atenção pela sua afinidade com materiais biológicos e suas propriedades ópticas. Nesta tese, estudamos a viabilidade de substratos de vidro, quartzo, mica e ITO (óxido de índio e estanho) modificado com quitosana, phtalocyanines (Ni, Fe e Ni) e poli(alilanina hidroclorada) (PAH) na adsorção de BSA em forma dos filmes produzidos pela técnica camada por camada. O sistema foi estudado por UV-Vis e espectroscopia de fluorescência estática e resolvida no tempo. A caracterização morfológica dos filmes foi realizada por microscopia de força atômica e microscopia óptica. Os resultados mostram que os filmes de BSA / HAP cresceram com eficiência quatro vezes maior do que os filmes feitos de quitosana, que o quartzo tem a melhor janela de trabalho de UV-vis e há uma relação entre o pH da BSA e o tempo vida de fluorescência do filme resultante. As nanopartículas de ouro foram produzidas pela redução química e estabilizada por quatro diferentes métodos. O crescimento das nanopartículas foi monitorado por UV-vis spectroscopy. A carga de superfície das nanopartículas e da BSA foi estimado em vários valores de pH por medidas de potencial zeta. Os resultados indicaram que as nanopartículas têm cargas negativas na faixa de pH estudada. Soluções de BSA foram preparadas em diferentes valores de pH, e levadas para interagir com as nanopartículas de ouro. Os dados de supressão de fluorescência da BSA mostraram uma maior afinidade da BSA com nanopartículas estabilizadas com sacarose, com pH próximo do ponto isoelétrico (IP) estimado para BSA. / The interface formed by biological materials and synthetic materials has great importance in biomedical applications such as the development of biomaterials for medical implants, which has as an essential process of protein adsorption on the surface of biomaterials, and is not yet well understood in the molecular level. Some proteins undergo conformational changes after adsorption at solid-liquid interfaces, affecting their functions or properties, and few techniques can measure conformational changes in solid interfaces. It is possible to study the intrinsic fluorescence of proteins: the position of the maximum in the spectral range of fluorescence, the quantum efficiency and lifetime of fluorescence are indicators of change in the local environment of fluorescent groups of protein molecules. On the other hand, gold nanopartículas have attracted much attention for its affinity with biological materials and their optical properties. In this thesis we study the feasibility of glass substrates, quartz, mica and ITO (Indium tin oxide) modified with chitosan, phtalocyanines (Ni, Fe and Ni) and poly (allylamine hydrochloride) (PAH) on the adsorption of BSA in the form of films produced by the layer by layer technique. The system was studied by UV-Vis and static and time-resolved fluorescence spectroscopy. Morphological characterization of the films was performed by atomic force microscopy and optical microscopy. The results indicate that the films of BSA/PAH grew with efficiency four times greater than the films made of chitosan, that the quartz has the best working window for UV-vis and there is a relationship between the pH of the BSA and lifetime of fluorescence of the resulting film. Gold nanoparticles were produced by chemical reduction and stabilized by four different methods. The growth of nanoparticles was monitored by UV-vis spectroscopy. The surface charge of nanoparticles and the BSA was estimated at various pH values by zeta potential measurements. The results indicated that the nanoparticles have negative charges in the pH range studied. BSA solutions were prepared at various pH values, were taken to interact with gold nanoparticles. Fluorescence quenching data of BSA showed a greater affinity of the BSA with nanoparticles stabilized with sucrose, at pH near the isoelectric point (IEP) estimated for BSA.
42

Gold Nanoparticle-Based Colorimetric Sensors for Detection of DNA and Small Molecules

Liang, Pingping 29 June 2016 (has links)
Biosensors have proven to be a powerful tool for detecting diverse targets, such as proteins, DNA, and small molecules representing disease biomarkers, toxins, drugs and their metabolites, environmental pollutants, agrichemicals, and antibiotics with high sensitivity and specificity. The major objective of the research described in this dissertation was to develop low cost, low sample volume, highly sensitive and specific AuNP-based colorimetric sensor platforms for the detection of DNA and small molecules. With this in mind, we propose an instrument-free approach in chapter three for the detection of NADH with a sensor constructed on a paper substrate, based on the target-induced inhibition of AuNP dissolution. The successful detection of this important molecule opens the door to numerous possibilities for dehydrogenase characterization, because NAD+/NADH are essential cofactors for more than 300 dehydrogenase enzymes. To further increase the sensitivity of our hybridization-based assay for DNA detection, we developed an enzyme-assisted target recycling (EATR) strategy in chapter four and have applied such an EATR-based colorimetric assay to detect single-nucleotide mismatches in a target DNA with DNA-functionalized AuNPs. This assay is based on the principle that nuclease enzymes recognize probe–target complexes, cleaving only the probe strand. This results in target release, enabling subsequent binding to and cleavage of another probe molecule. When the probe is conjugated onto AuNPs, complete cleavage from the AuNP surface produces a detectable signal in high ionic strength environments as the nanoparticles undergo aggregation. With such enzyme-assisted amplification, target detection can occur with a very low nM detection limit within 15 minutes. The extent of DNA loading on the AuNP surface plays an important role in the efficiency of DNA hybridization and aptamer-target assembly. Many studies have shown that high surface-coverage is associated with steric hindrance, electrostatic repulsive interactions and elevated surface salt concentration, whereas low surface-coverage can result in nonspecific binding of oligonucleotides to the particle surface. In chapter five, we investigated DNA surface coverage effects, and apply this optimization in conjunction with a highly-specific aptamer to develop a sensitive colorimetric sensor for rapid cocaine detection based on the inhibition of nuclease enzyme activity.
43

Desenvolvimento e caracterização de eletrodos baseados em nanotubos de carbono de paredes múltiplas decorados com nanopartículas de ouro para detecção de NO / Development and characterization of electrodes based on multiwall carbon-nanotubes decorated with gold nanoparticle for detection of NO

Ruiz, Jaqueline Pires 21 January 2013 (has links)
O óxido nítrico além de poluidor ambiental, também desempenha diversas funções no organismo, por exemplo, trata-se de uma molécula sinalizadora em diversos processos metabólicos. Por causa disso, a detecção de NO é uma importante ferramenta para a medicina. Assim, existe um significante interesse tanto da indústria como da medicina no desenvolvimento de novos materiais que possam detectar oxido nítrico Os Nanotubos de Carbono de Paredes Múltiplas, intensivamente explorados desde sua descoberta em 1991, são considerados promissores em diversas aplicações devido a sua estrutura única e a possibilidade de realizar modificações as quais influenciam suas propriedades físicas e químicas. Já o ouro, conhecido por sua baixa atividade catalíca quando utilizado na forma cristalina, começou a ter seu poder catalítico explorado a partir de 1985, quando descobriu-se que, se utilizado na forma de pequenas partículas, este comporta-se mais como átomos individuais e torna-se mais catalítico que o ouro cristalino. Assim, o objetivo deste trabalho foi promover a funcionalização dos nanotubos de carbono, o que pode ser confirmado por MEV, FTIR e RAMAN, e, a partir dos grupos funcionais gerados, ancorar nanoparticulas de ouro em suas paredes, a fim de otimizar as propriedades catalíticas do material. O material gerado foi caracterizado morfologicamente e estruturalmente por MEV-FEG, EDX, Raio-X, RAMAN e UV-vis. Já a caracterização eletroquímica foi feita por voltametria cíclica frente ao K4[Fe(CN)6], com o qual foi possível mostrar um aumento na densidade de corrente de pico, o deslocamento do potencial de pico para valores menos positivos e também a diminuição do sobrepotencial, quando comparados o sensor Náfion®/AuNP/MWCNT/GC com o Náfion®/GC, Náfion®/MWCNT/GC e Náfion®/Ouro. O eletrodo proposto foi utilizado na determinação de Óxido Nítrico, em tampão PBS pH 4,4, utilizando a técnica de voltametria de pulso diferencial. A metodologia proposta apresentou um limite de detecção de 2,4x10-10 mol L-1 e um limite de quantificação de 7,9x10-10 mol L-1. Assim, este trabalho mostrou a potencialidade de utilização do eletrodo Náfion®/AuNP/MWCNT/GC como sensor eletroquímico para detecção e quantificação de óxido nítrico. / Nitric oxide (NO) is an environmental polluter, which also plays several roles in the body, for example, as a signaling molecule for many metabolic processes. Because this, detecting NO is an important tool in medicine. As a result, there was significant interest in both industry and medicine in developing new materials that can detect NO. Multiwall carbon nanotubes, that have been intensively explored since its discovery in 1991, are considered promising in many applications due to its unique structure and because it can be easily modified in order to tuning their physical and chemical properties. But the interest in using gold as the catalytic material appeared only in 1985, when was discovered that small particles form of gold behaves as individual atoms and it are more catalytic that crystalline gold. In this way, the objectives of this study were promoted the functionalization of carbon nanotubes - which could be confirmed by SEM, FTIR, Raman - and, with the functional groups generated, anchoring gold nanoparticles in their walls, in order to improve the catalytic properties of such material. The developed material was morphologically and structurally characterized by FEG-SEM, EDX, X-ray, Raman and UV-vis. As well, the electrochemical characterization was performed by cyclic voltammetry in K4[Fe(CN)6] solution. When Nafion®/AuNP/MWCNT/GC sensor was compared with Náfion®/GC, Náfion®/MWCNT/GC and Náfion®/Gold, its show an increase in current density peak, the peak potential displacement to less positive values and also decreased potential difference between the cathodic and anodic peak. The proposed electrode was used in the determination of nitric oxide in PBS buffer pH 4.4, which showed a detection limit of 2,4x10-10 mol L-1 and a quantification limit of 7,9x10-10 mol L-1 using the differential pulse voltammetry. Thus, this study demonstrated the potential use of Nafion®/AuNP/MWCNT/GC electrode as an electrochemical sensor in the nitric oxide detection and quantification.
44

Cell-Based Sensing of Endocrine Disrupting Substances Using Fluorescent Protein-Gold Nanoparticle Complexes

Wang, Xian 29 August 2014 (has links)
Developing a sensitive and effective in vitro bioassay to detect endocrine disrupting chemicals (EDCs) would reduce the cost, eliminate the possibility of low dose effects, detect the non-monotonic dose responses, and identify mechanisms of actions. The “chemical nose” sensing method using supramolecular complexes composed of cationic monolayer functionalized gold nanoparticles (AuNPs) and fluorescent proteins (FPs) can successfully distinguish serum proteins, mammalian cells, tissue lysates, and chemotherapeutic drug mechanisms. EDCs regulate target cells via genomic or non-genomic pathways in terms of proliferative effect and response time. In this thesis, green fluorescent protein-gold nanoparticle (GFP-AuNP) sensors were used to detect the proliferative effect of 17b-estradiol (E2) and bisphenol A (BPA) on MCF7 and T47D cell lines at fM or pM dose range. Non-monotonic dose responses were also observed at different exposure times. The dose-response relationships using GFP-AuNP sensors could be correlated to the cell cycle analysis. Interestingly, tamoxifen, an estrogen antagonist, showed distinct patterns at low doses on HepG2 cells using triple channel FP-AuNP sensors, which might indicate different mechanisms of actions in this dose range.
45

Nanoparticules mimes des propriétés biologiques des GAGs : vers un inhibiteur sélectif de CXCL12 / Nanoparticles mimicking the biological properties of GAGs : towards a selective inhibitor of CXCL12

Tang, Lu 02 November 2015 (has links)
L'Héparane Sulfate (HS), un polysaccharide linéaire, module les activités biologiques de nombreuses protéines. Afin d'élucider les interactions entre l'HS et les protéines, la synthèse chimique d'HS est un outil précieux, mais elle peut être difficile. Notre équipe a montré que des mélanges combinatoires obtenus par auto-assemblage de différentes combinaisons de dérivés disaccharidiques (lactose et lactose persulfaté) sur surfaces planes d'or peuvent reconnaître spécifiquement certaines protéines se liant à l'HS, telles que les isoformes de la chimiokine CXCL12 ou IFNγ. Avec ces dérivés, nous avons réalisé un auto-assemblage sur des nanoparticules d'or. Mais à cause de la toxicité des nanoparticules d'or, nous avons aussi adapté cette méthode à des nanoparticules lipidiques. En utilisant les conditions qui ont déjà été améliorées pendant la synthèse des dérivés lactose et lactose persulfaté, nous avons préparé deux autres dérivés disaccharidiques plus proches de la structure réelle d'HS. Ces nouveaux dérivés sont utilisés pour réaliser des nanoparticules d'or et nanoparticules lipidiques afin de comparer les propriétés avec les lactose et lactose persulfaté. Les tests d'affinité avec différentes protéines sont en cours de réalisation. / Héparan Sulfate (HS) is a linear polysaccharide that modulates the biological activities of numerous proteins. In order to elucidate the interaction between HS and proteins, the synthesis of HS is an invaluable tool, but the synthesis is sometimes difficult. Our group has demonstrated that the combinatorial mixtures obtained by self-assembly of different combinations of disaccharide derivatives (lactose and persulfated lactose) on gold plan surfaces could recognize specifically some HS binding proteins, such as the isoforms of the chemokine CXCL12 or IFNγ. Because of the toxicity of gold nanoparticles, we have also adapted this method to lipid nanoparticles. Using the conditions that have already improved during the synthesis of lactose and persulfated lactose derivatives, we have synthesized two other disaccharide derivatives, which were closer to the real structure of HS. These new derivatives were used to prepare the gold and lipid nanoparticles at the aim of comparing the properties with lactose and persulfated lactose. The tests of affinities with different proteins are in progress.
46

SYNTHESIS OF GOLD NANOPARTICLE CATALYSTS USING A BIPHASIC LIGAND EXCHANGE METHOD AND STUDY OF THEIR ELECTROCATALYTIC PROPERTIES

Toma Bhowmick (10712736) 06 May 2021 (has links)
<div><br></div><div><p>Noble metal nanoparticles have been studied extensively as heterogeneous catalysts for electrocatalytic and thermal reactions. In particular, the support material for the catalytic species is known to play a role in influencing the geometric and electronic properties of the active site as well as its catalytic performance. Polycrystalline gold electrodes have been used as a support to modify the electrocatalytic behavior of adsorbed molecular species. Here, we have studied two electrocatalytic processes- the hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR), using Au nanoparticle-based catalysts.</p> <p>Transition metal dichalcogenides are well-known HER catalysts that show structure-sensitive catalytic activity. In particular, undercoordinated sulfur sites at the edges of bulk materials as well as amorphous clusters and oligomers tend to show the highest reactivity. The hydrogen adsorption energy of MoS<sub>x</sub> nanoclusters can be further tuned through the metallic support. Here, we synthesize colloidal Au@MoS<sub>4</sub><sup>2-</sup>, Au@WS<sub>4</sub><sup>2-</sup>and Au@MoS<sub>4</sub><sup>2-</sup>-WS<sub>4</sub><sup>2-</sup> using a biphasic ligand-exchange method. The MoS<sub>4</sub><sup>2-</sup> and WS<sub>4</sub><sup>2-</sup> complexes show higher HER activity when supported on Au nanoparticles than on to a carbon control, illustrating the electronic role played by the support material.</p> <p>In the second project, Au nanoparticle cores are utilized as supports for Pd submonolayer and monolayer surfaces in order to catalyze the two-electron reduction of O<sub>2</sub> to generate hydrogen peroxide. Bulk surfaces of Pt and Pd are excellent catalysts for the four-electron reduction of O<sub>2</sub> to H<sub>2</sub>O. In order to achieve high selectivity for H<sub>2</sub>O<sub>2</sub>, we postulate that the ensemble geometry of the Pd surface must be reduced to small islands or single atoms based on literature studies that have shown that large Pd ensembles are required for O–O bond cleavage. In this study, we synthesize several submonolayers surface coverages of Au@Pd core-shell nanoparticles using a biphasic ligand-exchange method. As the Pd coverage decreases from monolayer to submonolayer, the peroxide selectivity rises but is accompanied by an increase in catalytic overpotential. The highest peroxide selectivity was observed for 0.1 layers of Pd on Au, which likely exhibits the highest fraction of isolated atom and small cluster geometric ensembles of Pd.</p><br></div>
47

Electrochemical Promotion of Gold Nanoparticles Supported on Yttria-Stabilized Zirconia

Kim, Jong Min January 2011 (has links)
The feasibility of highly dispersed gold nanocatalyst supported on yttria-stabilized zirconia (YSZ) for the model reactions of C2H4 and CO oxidation is demonstrated for the first time. Gold nanoparticles are synthesized on YSZ powder by chemical reduction of the precursor salt in the mixture of ethanol, water and polyvinylpyrrolidone (PVP). Resulting metal loading of the catalysts are 1 wt.% with average particle sizes ranging from 6 to 9 nm. Results of CO and C2H4 oxidation display catalytic activity at 65 0C and 25 0C for CO and C2H4 oxidation, respectively. The catalytic properties of the catalysts are different due to their average particle size. Electrochemical Promotion of Catalysis (EPOC) of C2H4 oxidation is demonstrated. Application of constant potential difference between two electrodes in the bipolar electrochemical cell led to increase in C2H4 conversion. A proposed mechanism explains the bipolar EPOC phenomenon through formation of O2- flux across the electrochemical cell, resulting in the change of Work Function of gold nanoparticles placed in between the electrodes and is electronically isolated.
48

Quantitative Characterization of Free Radical Generation under Ir-192 Photon Irradiation for Gold Nanoparticle Mediated Radiation Therapy

Xie, Kanru January 2020 (has links)
No description available.
49

Binary Planet–Satellite Nanostructure Using RAFT Polymer

Peng, Wentao 05 June 2020 (has links)
No description available.
50

Investigation of Aminoglycoside Induced Nanoparticle Self-Assemblies

Leong, Michael 01 January 2018 (has links)
Aminoglycosides are a group of broad-spectrum antibiotics that, under neutral pH conditions, carry a positive charge. The net cationic charge arises from the high number of amino groups in the core structure of aminoglycosides. Previous studies performed have shown that negatively charged citrate ligand-capped gold nanoparticles (AuNPs) can interact with various biomolecules such as aminoglycosides. AuNPs bound to biomolecules have been used in conjugation with various assaying techniques to detect and study compounds in vitro and in vivo. AuNPs also have strong light scattering properties that can be used with a wide variety of imaging and assaying techniques. Our laboratory has previously performed experiments on the aminoglycoside antibiotic ribostamycin sulfate. During this experiment, the concentration dependent rod-like assembly of ribostamycin sulfate was characterized. This experiment used three analytical techniques in conjunction with AuNPs: (1) dynamic light scattering (DLS), (2) UV-Vis absorption spectroscopy, and (3) dark field optical microscope imaging (DFM). This suite of techniques was used to analyze mixtures of ribostamycin sulfate at different concentration with different sized AuNPs. The primary objective of this research was to determine if the techniques used to characterize the self-assembly of ribostamycin sulfate could be generalized and applied to other aminoglycoside antibiotics. The secondary objective of this research was to determine if other aminoglycoside antibiotics formed rod-like assemblies. This study demonstrated that AuNPs can be used to detect self-assembled oligomers for different aminoglycoside antibiotics. In addition, this study also revealed that not all aminoglycoside antibiotics will self assemble into rod-like oligomers similar to ribostamycin. It was observed that the aminoglycoside antibiotic amikacin self assembled into rod-like aggregates similar to ribostamycin sulfate but the aminoglycoside antibiotics neomycin sulfate and streptomycin sulfate did not.

Page generated in 0.0615 seconds