Spelling suggestions: "subject:"grau"" "subject:"grup""
21 |
Arte, política, educação popular: diálogos necessários para transformação social / Art, politics, popular education: dialogues necessary for social transformationPercassi, Jade 05 May 2015 (has links)
Pretendemos com este trabalho contribuir para evidenciar a atualidade do debate conceitual sobre a educação popular, em diálogo com o fazer artístico e a intencionalidade política. Para tanto, lançamos mão da observação participante junto a uma iniciativa de grupos de teatro de grupo da cidade de São Paulo, de criação de espaços coletivos de ação e reflexão sobre seu fazer artístico, investigando potencialidades e limites de sua contribuição estética, políti-ca e pedagógica para a formação cultural e política - e conscientização - da classe trabalhado-ra. Nessa trajetória emergiram questões fundamentais para a construção de uma atuação transformadora do ponto de vista estético, das condições materiais, do modo de produção, das formas organizativas dos trabalhadores e trabalhadoras da arte e do teatro, da relação com o público, da interação com movimentos sociais. Tais questionamentos nos remeteram a sua historicidade, identificando continuidades, descontinuidades, contradições e supera-ções em relação a experiências anteriores em que a arte, assim como a educação, como as-pectos da cultura estiveram imbricadas em uma estratégia política de transformação social. / We intend with this work contribute to highlighting the relevance of the conceptual debate on popular education, in dialogue with artistic practice and the political intentionality. For this, we used participant observation with an initiative of theater groups \"group\" of São Pau-lo, of creating collective spaces of action and reflection on their artistic practice, investigating the potential and limits of its aesthetic , political and educational contribution to the cultural and political - and raising awareness - of the working class. Along the way key issues emerged for the construction of a transforming performance - from the aesthetic point of view, the material conditions, of the production process, the organizational forms of workers of art and theater, the relationship with the public, the interaction with social movements. Such questions have referred to their historicity, identifying continuities, discontinuities, contra-dictions and overcomes from previous experiences when art, as well as education, as cultur-al aspects, were intertwined in a political strategy of social transformation.
|
22 |
Arte, política, educação popular: diálogos necessários para transformação social / Art, politics, popular education: dialogues necessary for social transformationJade Percassi 05 May 2015 (has links)
Pretendemos com este trabalho contribuir para evidenciar a atualidade do debate conceitual sobre a educação popular, em diálogo com o fazer artístico e a intencionalidade política. Para tanto, lançamos mão da observação participante junto a uma iniciativa de grupos de teatro de grupo da cidade de São Paulo, de criação de espaços coletivos de ação e reflexão sobre seu fazer artístico, investigando potencialidades e limites de sua contribuição estética, políti-ca e pedagógica para a formação cultural e política - e conscientização - da classe trabalhado-ra. Nessa trajetória emergiram questões fundamentais para a construção de uma atuação transformadora do ponto de vista estético, das condições materiais, do modo de produção, das formas organizativas dos trabalhadores e trabalhadoras da arte e do teatro, da relação com o público, da interação com movimentos sociais. Tais questionamentos nos remeteram a sua historicidade, identificando continuidades, descontinuidades, contradições e supera-ções em relação a experiências anteriores em que a arte, assim como a educação, como as-pectos da cultura estiveram imbricadas em uma estratégia política de transformação social. / We intend with this work contribute to highlighting the relevance of the conceptual debate on popular education, in dialogue with artistic practice and the political intentionality. For this, we used participant observation with an initiative of theater groups \"group\" of São Pau-lo, of creating collective spaces of action and reflection on their artistic practice, investigating the potential and limits of its aesthetic , political and educational contribution to the cultural and political - and raising awareness - of the working class. Along the way key issues emerged for the construction of a transforming performance - from the aesthetic point of view, the material conditions, of the production process, the organizational forms of workers of art and theater, the relationship with the public, the interaction with social movements. Such questions have referred to their historicity, identifying continuities, discontinuities, contra-dictions and overcomes from previous experiences when art, as well as education, as cultur-al aspects, were intertwined in a political strategy of social transformation.
|
23 |
User-Based Predictive Caching of Streaming Media / Användarbaserad predektiv cachning av strömmande mediaHåkansson, Fredrik, Larsson, Carl-Johan January 2018 (has links)
Streaming media is a growing market all over the world which sets a strict requirement on mobile connectivity. The foundation for a good user experience when supplying a streaming media service on a mobile device is to ensure that the user can access the requested content. Due to the varying availability of mobile connectivity measures has to be taken to remove as much dependency as possible on the quality of the connection. This thesis investigates the use of a Long Short-Term Memory machine learning model for predicting a future geographical location for a mobile device. The predicted location in combination with information about cellular connectivity in the geographical area is used to schedule prefetching of media content in order to improve user experience and to reduce mobile data usage. The Long Short-Term Memory model suggested in this thesis achieves an accuracy of 85.15% averaged over 20000 routes and the predictive caching managed to retain user experience while decreasing the amount of data consumed. / <p>This thesis is written as a joint thesis between two students from different universities. This means the exact same thesis is published at two universities (LiU and KTH) but with different style templates. The other report has identification number: TRITA-EECS-EX-2018:403</p>
|
24 |
The circumstellar envelope of the S-type AGB star π1 GruisLam, Doan Duc January 2017 (has links)
No description available.
|
25 |
Využití umělé inteligence k monitorování stavu obráběcího stroje / Using artificial intelligence to monitor the state of the machinePopara, Nikola January 2021 (has links)
This thesis is focus on monitoring state of machine parts that are under the most stress. Type of artificial intelligence used in this work is recurrent neural network and its modifications. Chosen type of neural network was used because of the sequential character of used data. This thesis is solving three problems. In first problem algorithm is trying to determine state of mill tool wear using recurrent neural network. Used method for monitoring state is indirect. Second Problem was focused on detecting fault of a bearing and classifying it to specific category. In third problem RNN is used to predict RUL of monitored bearing.
|
26 |
Popis fotografií pomocí rekurentních neuronových sítí / Image Captioning with Recurrent Neural NetworksKvita, Jakub January 2016 (has links)
Tato práce se zabývá automatickým generovaním popisů obrázků s využitím několika druhů neuronových sítí. Práce je založena na článcích z MS COCO Captioning Challenge 2015 a znakových jazykových modelech, popularizovaných A. Karpathym. Navržený model je kombinací konvoluční a rekurentní neuronové sítě s architekturou kodér--dekodér. Vektor reprezentující zakódovaný obrázek je předáván jazykovému modelu jako hodnoty paměti LSTM vrstev v síti. Práce zkoumá, na jaké úrovni je model s takto jednoduchou architekturou schopen popisovat obrázky a jak si stojí v porovnání s ostatními současnými modely. Jedním ze závěrů práce je, že navržená architektura není dostatečná pro jakýkoli popis obrázků.
|
27 |
A Deep Learning Approach To Vehicle Fault Detection Based On Vehicle BehaviorKhaliqi, Rafi, Iulian, Cozma January 2023 (has links)
Vehicles and machinery play a crucial role in our daily lives, contributing to our transportationneeds and supporting various industries. As society strives for sustainability, the advancementof technology and efficient resource allocation become paramount. However, vehicle faultscontinue to pose a significant challenge, leading to accidents and unfortunate consequences.In this thesis, we aim to address this issue by exploring the effectiveness of an ensemble ofdeep learning models for supervised classification. Specifically, we propose to evaluate the performance of 1D-CNN-Bi-LSTM and 1D-CNN-Bi-GRU models. The Bi-LSTM and Bi-GRUmodels incorporate a multi-head attention mechanism to capture intricate patterns in the data.The methodology involves initial feature extraction using 1D-CNN, followed by learning thetemporal dependencies in the time series data using Bi-LSTM and Bi-GRU. These models aretrained and evaluated on a labeled dataset, yielding promising results. The successful completion of this thesis has met the objectives and scope of the research, and it also paves the way forfuture investigations and further research in this domain.
|
28 |
Maximizing Recommendation System Accuracy In E-Commerce for Clothing And Accessories for Children / Maximera precisionen för rekommendationssystem inom e-handel för barnkläderRenström, Niklas January 2022 (has links)
The industry of electronic commerce (e-commerce) constitutes a great part of the yearly retail consumption in Sweden. Looking at recent years, it has been seen that a rapidly growing sector within the mentioned field is the clothing industry for clothes and accessories for children and newborns. To get an overview of the items and help customers to find what they are looking for, many web stores have a system called a Recommendation System. The mechanics behind this service can look rather different depending on the method used. However, their unified goal is to provide a list of recommended items of interest to the customer. A branch within this field is the Session Based Recommendation System (SBRS). These are models which are designed to work with the trace of products, called a session, that a user currently has visited on the web store. Based on that information they then formulate an output of recommended items. The SBRS models have been especially popularized since the majority of customers browse in an anonymous behavior, which means that they due to time efficiency often neglect the possibility of creating or logging into any personal web store account. This however limits the accessible information that a system can make use of to shape its item list. It can be seen that the number of articles exploring SBRS within the fashion branch of clothing and accessories for children is very limited. This thesis is made to fill that gap. After a thorough literature study, three models were found to be of certain interest, the Short-Term Attention/Memory Priority (STAMP) model, Long Short-Term Memory (LSTM) model, and Gated Recurrent Unit (GRU) model. Further, the LSTM model is included as it is the collaborative company, BabyShop Group AB's current used method. The results of this thesis show that the GRU model is a promising method, managing to predict the next item for a customer more consistently than any other of the evaluated models. Furthermore, it can also be seen that what embeddings the models use to represent the products plays a significant role in the learning and evaluation of the used data set. Moreover, a benchmark model included in this thesis also shows the importance of filtering the data set of sessions. It can be seen that a majority of customers visit already-seen products, logged happenings most likely due to refreshing web pages or similar actions. This causes the session data set to be characterized by repeated items. For future work, it would therefore indeed be interesting to see how this data set can be filtered in a different way. To see how that affects the outcome of the used metrics in this thesis. / Industrin för elektronisk handel (e-handel) utgör en stor del av den årliga konsumtionen av återförsäljning i Sverige. Bara genom att följa de senaste åren har det kunnat ses att en snabbt växande sektor inom det nämnda området är den som berör kläder och accessoarer för barn. För att kunna ge en överblick och hjälpa kunder att finna vad de söker använder många webbutiker ett system som kallas rekommendationssystem. Hur dessa system faktiskt fungerar kan se väldigt olika ut. Men deras gemensamma mål är att i slutändan kunna ge en lista av rekommenderade produkter till kunden. En gren inom detta område är sessionsbaserade rekommendationssystem. Detta är modeller som är designade för att arbeta med själva spåret av besökta produkter, de som en kund har varit inne på under sin nuvarande vistelse på webbutiken. Baserat på denna information formuleras sedan en lista av rekommenderade produkter till besökaren. Dessa typer av modeller har blivit särskilt populära då många kunder gillar att shoppa anonymt. Vilket i denna kontext betyder att de gärna slipper att behöva logga in på något personligt konto på webbutiken, där särskild information kan sparas. Men detta betyder också att mängden tillgängliga data minskas för rekommendationssystemet. Antalet forskningsartiklar som utforskar sessionsbaserade rekommendationssystem för e-handel inom barnmode är väldigt begränsad. Denna avhandling är därför gjord med syftet att försöka fylla detta tomrum. En genomgående litteraturstudie visade att tre modeller var av särskilt intresse, nämligen Short-Term Attention/Memory Priority (STAMP), Gated Recurrent Unit (GRU) och Long Short Term Memory (LSTM) modellen. Den sistnämnda är inkluderad då detta är den nuvarande modellen som används av företaget som denna avhandling har gjorts i samarbete med, BabyShop Group AB. Resultaten i denna avhandling kan påvisa att GRU är en mycket lovande modell som lyckades förutbestämma nästkommande produkt i en sessionskedja bäst. Utöver detta kan det också ses att embedding-vektorerna som används för att representera produkterna för modellerna spelar en avgörande roll. Speciellt för deras lärande och evaluering av data. Förutom det påvisade en av riktvärdesmodellerna som användes i denna avhandling den viktiga innebörden av att filtrera sessionsdata. Det kan nämligen urskiljas i den data som erhölls från företaget att många kunder återbesöker en stor del av redan besökta produkter. Detta åstadkommas troligen av att kunderna uppdaterar sidan de är på, eller utför någon annan liknande handling. Det här gör att en stor del av den sessionsdata som används i denna avhandling innehåller många upprepade produkter i de givna sessionskedjorna. Som framtida arbete vore det därför intressant att utforska olika filtreringsmetoder som kan appliceras på den givna datamängden. Detta för att se hur en mera filtrerad datamängd påverkar slutresultatet av de använda mätmetoderna i denna avhandling.
|
29 |
Forecasting checking account balance : Using supervised machine learningDannelind, Martin January 2022 (has links)
The introduction of open banking has made it possible for companies to build the next generation of applications based on transactional data. Enabling economic forecasts which private individuals can use to make responsible financial decisions. This project investigated forecasting account balances using supervised learning. 7 different regression models were run on transactional data from 377 anonymised checking accounts split into subgroups. The results concluded that multivariate XGBoost optimised with feature selection was the best performing forecasting model and the subgroup with recurring income transactions was easiest to forecast. Based on the result from this project it can be concluded that a viable option to forecast account balances is to split the transactional data into subgroups and forecast them separately. Minimising the errors given by certain random, infrequent and large types of transactions.
|
30 |
Electrical lithium-ion battery models based on recurrent neural networks: a holistic approachSchmitt, Jakob, Horstkötter, Ivo, Bäker, Bernard 15 March 2024 (has links)
As an efficient energy storage technology, lithium-ion batteries play a key role in the ongoing electrification of the mobility sector. However, the required modelbased design process, including hardware in the loop solutions, demands precise battery models. In this work, an encoder-decoder model framework based on recurrent neural networks is developed and trained directly on unstructured battery data to replace time consuming characterisation tests and thus simplify the modelling process. A manifold pseudo-random bit stream dataset is used for model training and validation. A mean percentage error (MAPE) of 0.30% for the test dataset attests the proposed encoder-decoder model excellent generalisation capabilities. Instead of the recursive one-step prediction prevalent in the literature, the stage-wise trained encoder-decoder framework can instantaneously predict the battery voltage response for 2000 time steps and proves to be 120 times more time-efficient on the test dataset. Accuracy, generalisation capability and time efficiency of the developed battery model enable a potential online anomaly detection, power or range prediction. The fact that, apart from the initial voltage level, the battery model only relies on the current load as input and thus requires no estimated variables such as the state-of-charge (SOC) to predict the voltage response holds the potential of a battery ageing independent LIB modelling based on raw BMS signals. The intrinsically ageingindependent battery model is thus suitable to be used as a digital battery twin in virtual experiments to estimate the unknown battery SOH on purely BMS data basis.
|
Page generated in 0.0471 seconds