391 |
Adventures in Heterotic String PhenomenologyDundee, George Benjamin 07 October 2010 (has links)
No description available.
|
392 |
Foraging strategy and social behavior of a snake (Lycodon semicarinatus, Colubridae) feeding on sea turtles / ウミガメを捕食するアカマタ(ナミヘビ科)の採餌戦略および社会行動の解明Matsumoto, Kazumasa 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23739号 / 理博第4829号 / 新制||理||1690(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 森 哲, 教授 中川 尚史, 教授 中務 真人 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
393 |
CADMIUM AND CALCIUM TRANSPORT ALONG THE GASTRO-INTESTINAL TRACT OF RAINBOW TROUT: MORE THAN “GUT FEELINGS” ON MECHANISMS OF UPTAKEKlinck, Joel S. 04 1900 (has links)
<p>Teleosts take up metals by two major pathways: gills and/or gut. Past research is heavily focused on branchial uptake despite evidence that the gastro-intestinal tract (GIT) is the dominant route in some natural environments. To address this information gap, my thesis characterizes uptake mechanisms of Cd and Ca along the GIT of <em>Oncorhynchus mykiss</em>. Toxic effects of Cd, protective effects of Ca against Cd uptake, and Cd distribution within fish after ingestion are also explored.</p> <p>Four-week dietary Cd exposure affected growth and Ca regulation, while causing toxicity at the subcellular level. Elevated Ca in diets protected against accumulation and altered subcellular handling of Cd. Pre-exposure to different diets changed unidirectional uptake and binding rates of Cd and Ca, although they remained highly correlated. Binding rates of Cd to mucus can predict absorption rates of Cd<strong>.</strong></p> <p>A variety of <em>in vitro </em>and <em>in vivo </em>experiments on four distinct GIT segments (stomach, anterior-, mid-, and posterior- intestine) were undertaken to determine specific mechanisms of Cd and Ca uptake in freshwater trout. Cd transport was unaffected by solvent drag, but was stretch- and temperature- sensitive. Strong evidence for a common pathway for Ca and Cd transport was obtained. Cd also appeared to be taken up in part by zinc (ZIP-like) transporters and the divalent metal transporter DMT1. Ca uptake along the GIT appeared to be carrier-mediated, time- and concentration- dependent, but was not affected by solvent drag, or by Na concentration. Mucosal Cd did not inhibit Ca uptake. Ca, but not Cd, uptake rates were much lower in sea water-acclimated trout. Seawater and freshwater fish accumulated similar whole body Cd concentrations when fed contaminated diets for three weeks, but the majority of Cd in seawater trout remained in the posterior intestine tissue, while freshwater trout had higher internal burdens.</p> <p>This thesis advances the knowledge of metal uptake along the GIT of trout.</p> / Doctor of Science (PhD)
|
394 |
The Effects of Bifidobacterium Longum NCC3001 on AH Neuron Excitability and Slow Wave Activity of the Mouse IntestineKhoshdel, Amir 04 1900 (has links)
<p>The small intestine holds an intrinsic ability to digest and absorb nutrients from the food we intake without intervention from the central nervous system. This ability is made possible by the population of cells that inhabit the gut, particularly interstitial cells of Cajal of the myenteric plexus and sensory primary intrinsic neurons (AH cells), which ultimately influence muscle function and motility. The AH cells are the first neurons in the hierarchy of sensory neurons in the gut and are therefore a perfect candidate to test the effects of <em>Bifidobacterium longum</em> NCC3001 supernatant since in a physiological setting the metabolites secreted by this bacterium can interact with the AH cells directly or indirectly through absorption by the mucosa.</p> <p>The probiotic <em>Bifidobacterium</em> <em>longum</em> NCC3001 has been shown to normalize anxiety-like behaviour and hippocampal brain derived neurotropic factor (BDNF) levels in mice infected with <em>Trichuris</em> <em>muris </em>in a model of infectious colitis. Utilizing a chronic model of colitis, a study was conducted to decipher whether or not the anxiolytic effects of <em>Bifidobacterium longum</em> NCC3001 involved the vagus. My specific objective in this study was to find evidence for interaction between <em>B.longum</em> NCC3001 and myenteric neurons as a potential route for <em>B.longum</em> NCC3001 to influence CNS function. We assessed a cell’s electro-responsiveness through spike discharge, which is the number of action potentials elicited in response to a supra-threshold depolarizing current injection.</p> <p>The electro-responsiveness of neurons perfused with <em>B. longum</em> NCC3001 supernatant (conditioned medium; n = 4) was significantly reduced compared to the control group (those perfused with Krebs solution; n = 5; <em>P</em> = 0.016). The electro-responsiveness of neurons perfused with the conditioned medium was also significantly lower than that of neurons perfused with unconditioned group (MRS growth medium alone) group (n = 4; <em>P</em> = 0.029). In comparing the excitabilities of the neurons in the control group with that of the control media group, there was no statistical difference (<em>P</em> = 0.29).</p> <p>In subsequent studies, the objective was to identify the AH cells and to determine the effect of <em>B. longum</em> NCC3001 conditioned medium on this population of cells. The electro-responsiveness as measured through spike discharge of AH cells perfused with the conditioned medium (n = 5) was significantly reduced compared to neurons perfused with the unconditioned medium (n = 5; <em>P</em> = 0.02). Sensory neurons perfused with the conditioned medium (n = 9) exhibited a significant reduction in their instantaneous input resistances compared to neurons perfused with the unconditioned medium (n = 8; <em>P </em>= 0.01). There was also a significant reduction in the time-dependent input resistance of neurons perfused with the conditioned medium (n = 9) compared to neurons perfused with the unconditioned medium (n = 8; <em>P </em>= 0.02). In addition, perfusion of the conditioned medium over sensory neurons (n = 9) significantly reduced the magnitude of the hyperpolarization-activated cationic current (<em>I</em><sub>h</sub>) compared to neurons perfused with the unconditioned medium (n = 8; <em>P</em> = 0.0003). Furthermore, there was also a significant reduction in the action potential half width duration of myenteric sensory neurons perfused with conditioned medium (n = 5) compared to that exhibited by neurons perfused with the unconditioned medium (n = 5; <em>P</em> = 0.008).</p> <p>In later experiments, we wanted to gain a more comprehensive understanding of the effect of this bacterium on the gut so we evaluated its effects on the gut musculature. Upon full immersion, the supernatant of <em>Bifidobacterium longum</em> NCC3001 (conditioned medium) caused an initial depolarization of the circular smooth muscle cell. This depolarization continued until the slow wave oscillations in these cells ceased and membrane potential would plateau. Several minutes after this plateau, the slow wave oscillations reappeared and the cell was significantly hyperpolarized relative to the conditions before conditioned medium was added. The resting membrane potential of circular smooth muscle cells in Krebs solution was -54.3 mV and -70.3 mV approximately two minutes after full immersion by the supernatant when the cell was hyperpolarized and a stable recorded was achieved (n = 7; <em>P</em> = 0.02). The average time of onset of depolarization was 18.6 s and the average change in membrane potential (depolarization) from onset of effect to its plateau was 14.0 mV (n = 7). Occasionally, the addition of the conditioned medium only caused an immediate but slight depolarization (n = 3) and in other cases caused only a hyperpolarization of the cell (n = 3) with no significant changes in any slow wave characteristics in either case. Furthermore, any cells that exhibited the waxing and waning of the slow wave lost this pattern upon the addition of the conditioned medium (n = 10).</p> <p>In attempts to understand the role of neurotransmission in this system, we conducted several experiments whereby carbachol (acetylcholine agonist) and L-NNA (nitric oxide synthase inhibitor) were administered to the muscle. Prior to the addition of 1μM carbachol or 2e<sup>-4 </sup>M L-NNA, we would only observe the pacemaker slow wave associated with the interstitial cells of Cajal of the myenteric plexus during the perfusion of Krebs solution. Upon the addition of carbachol (n = 3) or L-NNA (n = 4), we would observe a second slower frequency pattern appear, referred to as a waxing and waning pattern.</p> / Master of Science (MSc)
|
395 |
Antidepressant use during pregnancy: Determining the impact on the gut serotonergic system in the offspringLaw, Harriet 11 1900 (has links)
Approximately 10% of pregnant women take antidepressants. Prenatal exposure to selective serotonin reuptake inhibitors (SSRIs), a class of antidepressants, has been shown to alter serotonergic signaling in the brain. However, the effects of SSRIs on peripheral serotonin (5HT) synthesis and/or signaling have largely been ignored. Serotonin in the gut is critical for intestinal function and dysregulation of this pathway is associated with intestinal disease. Therefore, the goal of this study was to determine the effects of perinatal exposure to the SSRI fluoxetine (Prozac®) on intestinal health in the offspring. Dams were given vehicle or fluoxetine hydrochloride (FLX 10 mg/kg/d; N=15) for 2 weeks prior to mating until weaning. We assessed markers of serotonergic signaling, inflammation, and composition of the gut microbiota in the offspring. Male offspring of fluoxetine-treated dams had significantly elevated serum levels of 5-HT and decreased expression of the 5HT2A receptor and MAO. In female offspring there was no effect of SSRI exposure to alter any components of serotonergic signaling. Although we did not find any evidence of increased inflammation following fluoxetine exposure, there were significant alterations in the composition of the gut microbiota in the exposed offspring.
Male offspring of SSRIs-exposed mothers had changes in key components of the gut serotonergic system in association with elevated levels of serum 5-HT and alterations in the gut microbiota in adulthood. The impact of these changes on intestinal health and the reasons for the sex specific effects remain to be determined. / Thesis / Master of Science in Medical Sciences (MSMS)
|
396 |
The role of the gut microbiome in Major Depressive DisorderLouis-Auguste, Marc Philippe January 2019 (has links)
The aetiology of major depressive disorder (MDD) is poorly understood. Current evidence suggests immune activation and gut microbiota may play a role. Recent studies demonstrated that behavioural traits can be transferred through microbiota transplantation into germ-free (GF) mice. Here we study whether microbiota from patients with MDD can induce depressive-like behaviour.
Methods: GF NIH Swiss mice were colonized with stool microbiota from a patient with MDD with elevated faecal β-defensin 2, or a healthy donor (HC). After three weeks, behaviour was assessed using standard tests. Expression of neuroimmune markers was assessed in the gut and brain using gene expression profiling and immunohistochemistry. Microbiota composition was assessed by 16S rRNA sequencing.
Results: Microbiota profiles differed between the two groups of mice (p=0.001). Mice colonised with microbiota from a single characterised MDD patient (MDD1), exhibited lower preference for sucrose (p=0.002) and more emotionality (p=0.003) than mice with HC microbiota, however other MDD mice did not display abnormal behaviour. Abnormal MDD1 behaviour was associated with lower BDNF expression in the dentate gyrus of the hippocampus (p=0.02). Mice colonised with another characterised MDD patient (MDD4 mice) did not have differences in BDNF expression in the same region (p=0.20). MDD1 and MDD4 mice had altered hippocampal and gut gene expression for genes associated with the immune and nervous system. In summary, GF mice colonized with MDD1 microbiota exhibit depression-like behaviors. This appears to be accompanied by changes in intestinal permeability and neuroimmune function. These results suggest that gut microbiota has the capacity to influence the expression of MDD in some patients. / Thesis / Master of Science (MSc)
|
397 |
The Role of Gut-Brain Signalling in Functional Responses to Chronic Social StressBharwani, Aadil January 2019 (has links)
Chronic stress has a cumulative physiological impact, causing dysregulation of multiple systems due to allostatic overload. There is growing evidence that one such system, the microbiota, is engaged in persistent bidirectional interplay with the brain—a phenomenon that influences neural function and behaviour. However, the functional role of the microbiota in stress-associated changes and the underlying pathways of communication are unknown. Using a murine model of depression, we demonstrate that chronic stress has top-down effects on the structure of the microbiota community, reducing its richness and diversity, altering its profile, and causing differential abundance of various bacterial genera. These structural changes have functional consequences, including in metabolic pathways responsible for the synthesis of short chain fatty acids, tryptophan, and tyrosine. Using a physiologically active bacteria, Lactobacillus rhamnosus (JB-1), we probed for bottom-up signalling in chronic stress. JB-1 attenuated deficits in anxiety-like and social behaviours, and induced systemic immunoregulatory effects, independent of affecting stress-induced changes in the microbiota. In examining possible mechanisms of gut-brain brain signalling, we observed that in unstressed mice, a single dose of JB-1 causes rapid expression of c-Fos—a marker of neuronal activation—in distributed areas of the brain within 165 minutes, absent behavioural changes. No such effects were observed with heat-killed JB-1, despite that both live and heat-killed preparations facilitated vagal activity. Sub-diaphragmatic vagotomy prevented neuronal activation in most but not all brain regions, suggesting that vagal signalling is critical but indicating the presence of additional independent pathways. Finally, only chronic JB-1 treatment increased ΔFosB expression in the brain, which is indicative of long-term neuronal adaptations, in association with behavioural changes. These studies demonstrate a role for bidirectional gut-brain signalling in chronic stress, and highlight the signalling pathways and brain regions through which gut bacteria exert their influence on host behaviour. / Thesis / Candidate in Philosophy / Stress, which is a leading risk factor for mental illnesses such as depression,
drastically affects the microbiota—the community of intestinal bacteria. However, this
influence is bidirectional as gut bacteria can also influence the brain. Thus, we sought to
understand the role of the microbiota in the negative effects of stress and how these
microorganisms interact with the brain. We observed that behavioural changes in mice
after chronic stress were associated with inflammation and community-wide changes in
the microbiota. Treatment with a bacterial strain, Lactobacillus rhamnosus (JB-1),
attenuated changes in behaviour and inflammation, but had no effect on the microbiota
composition. We observed that the brain rapidly responded to JB-1 via the vagus nerve,
and that chronic treatment caused long-term changes in brain regions. This work will
allow us to discover novel pathways that can be targeted with greater specificity in
clinical settings, providing an innovative approach to treatment of psychiatric conditions.
|
398 |
THE EFFECT OF WASTEWATER EFFLUENT ON THE GUT CONTENT MICROBIOME OF RAINBOW DARTER (ETHEOSTOMA CAERULEUM)Restivo, Victoria January 2020 (has links)
MSc Thesis - The effect of wastewater effluent on the gut microbiome of rainbow darter / The microbiome plays an important role in host physiology and can be influenced by species, diet, and environment. Municipal wastewater effluent contains a mixture of chemicals including antibiotics and antimicrobials that may affect the gut microbiome of fish living downstream of these discharges. Thus, this study examines the effect of wastewater treatment plant (WWTP) effluent on the gut microbiome of wild rainbow darter (Etheostoma cearuleum), and examines how the gut microbiome of wild fish changes in the lab.
Fish were collected from sites upstream and downstream of 2 major WWTPs along the central Grand River and gut contents were aseptically sampled. After extracting gDNA, nested PCR of the V3-V4 region of the 16S rRNA gene, and Illumina sequencing were performed. The gut microbiome of exposed fish had increased bacterial diversity and was dominated by Proteobacteria, which has been linked to altered health outcomes in mammals.
Next, rainbow darters were collected from a reference site on the Grand River. Fish were sampled in the field, after a 14 day lab acclimation, and after a 28 day exposure to environmental stressors (WWTP effluent or triclosan, an antimicrobial found in WWTP effluent). Surprisingly, there were no changes in the microbiome after exposure to environmental stressors. Major changes were observed between the field and laboratory fish suggesting that environment and diet are important factors influencing the gut microbiome. Changes in the gut microbiome continued up to 42 days in the lab, indicating longer acclimation periods may be needed.
This study showed that effluents altered the gut microbiome of fish in the field, but not in the laboratory for unknown reasons. Laboratory studies indicated that transitioning to a new environment may require greater than 14 days before achieving a stable microbiome. / Thesis / Master of Science (MSc) / Wastewater is the largest source of pollution affecting Canada’s aquatic ecosystems; effluents contain antibiotics and antimicrobials that can affect fish and other aquatic life. The gut microbiome of fish is influenced by host species, its diet, and the environment, and thus contaminants released via wastewater effluents may alter the gut microbiome of fishes in receiving waters. This study found that the gut microbiota of rainbow darter fish exposed to wastewater effluents in the central Grand River (Waterloo/Kitchener, Ontario) were dominated by Proteobacteria and had increased diversity. Wild fish transitioned to the lab were dominated by Firmicutes and had decreased bacterial diversity in the gut compared to those in the wild. Altogether, these results suggest that wild fish exposed to wastewater effluents had altered gut microbiomes; transitions to new environments and laboratory acclimation periods are important considerations when studying the fish gut microbiome.
|
399 |
Investigating the microbial and immune mechanisms of depressive-like behaviour in a humanized mouse model of MDDHanuschak, Jennifer January 2020 (has links)
Major depressive disorder (MDD) is a highly heterogeneous disorder, with some patients displaying immune activation and altered intestinal microbiota composition when compared to healthy controls. In recent years, the transfer of fecal microbiota pooled from several MDD patients has been used to model depression in recipient rodents. However, we have previously observed the induction of donor-specific phenotypes in mice receiving microbiota from individual irritable bowel syndrome and generalized anxiety disorder patients. Therefore, we assessed the efficacy of fecal microbiota transplant (FMT) using individual versus pooled MDD patient microbiota to induce depressive-like behaviour in recipient rodents. We observed that pooling microbiota from several patients abrogated microbial features unique to individual donors. Mice that received pooled microbiota displayed different behavioural and immune phenotypes when compared to mice that received individual patient microbiota. Two individual MDD microbiota donors, patients MDD1 and MDD5, altered the behaviour of recipient mice when compared to controls. We identified several microbial species that may underlie the anxiety- and depressive-like behaviours observed in MDD1 and MDD5 mice. Additionally, altered expression of neural and immune genes was observed along the gut-brain axis of mice colonized with MDD1 microbiota. As microglia activation may play a role in our model, we developed a protocol for the isolation and phenotyping of adult mouse microglia that will facilitate future research efforts. Overall, our results demonstrate the heterogeneity of the microbial underpinnings of MDD and support the use of individual patient microbiota in future FMT experiments. / Thesis / Master of Science (MSc)
|
400 |
Divergent Immunity Proteins Protect Against a Type VI Secretion System Effector Family Found in the Human Gut MicrobiomeAzhieh, Amirahmad January 2022 (has links)
Antagonistic interactions between competing species of bacteria are an important driver of bacterial community composition in the human gut microbiota. Of particular significance is the role of the type six secretion system (T6SS), which many species of Gram-negative bacteria use to kill competitor bacteria in a contact-dependent manner. T6SSs are syringe-like nanomachines that function to deliver antibacterial toxins into susceptible competitors. Many bacteria present in the human gut microbiota possess an extremely potent T6SS that is capable of rapidly eradicating nearby bacteria. Remarkably, however, species of beneficial bacteria that coexist in the gut are often resistant to T6SS attack by their neighbours. This resistance is mediated by bacterial immunity proteins that block the activity of the antibacterial toxins delivered by the T6SS. Intriguingly, past studies have shown that the widespread T6SS-mediated competition in the gut has led to the acquisition of repertoires of immunity genes across different bacterial strains.
By examining available human gut metagenomes, I identified a putative immunity locus, named I2, in a species of gut bacteria. This locus is located downstream of its cognate T6SS toxin-encoding locus, E2, and I show when co-expressed with E2 in E. coli, it protects against E2 mediated-toxicity. Additionally, I show that four gut-derived I2 homologues bearing sequence identity levels to I2 ranging from 38% to 75% are equally capable of abrogating E2 toxicity. Using quantitative biophysical measurements, I also show that these I2 homologues physically bind E2 equally tightly pointing to the potential molecular mechanism of toxin neutralization. Lastly, through mutagenesis experiments, I found that the E2-I2 interaction is likely mediated by electrostatic forces between a small number of residues found in the interaction interface of the two proteins. Overall, these findings demonstrate that a human gut microbiome encoded type VI secretion system effector can be neutralized by divergent immunity proteins. / Thesis / Master of Science (MSc)
|
Page generated in 0.0274 seconds