• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 28
  • 5
  • Tagged with
  • 111
  • 110
  • 101
  • 70
  • 70
  • 68
  • 23
  • 22
  • 17
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification fonctionnelle et moléculaire d'un transporteur de psychotropes et substances d'abus / Functional and molecular identification of a transporter of psychotropic and drugs of abuse

Chapy, Hélène 07 May 2015 (has links)
Le système nerveux central est un organe privilégié et protégé, notamment grâce à l’existence des barrières histologiques entre le sang et les tissus nerveux. La barrière-hémato encéphalique (BHE) et la barrière hémato-rétinienne (BHR) séparent respectivement le parenchyme cérébral et la rétine des composés contenus dans l’espace vasculaire, grâce à l’expression de jonctions serrées et de transporteurs membranaires permettant une régulation spécifique des échanges entre le sang et le parenchyme nerveux. Ce travail a porté sur l’étude d’un nouveau transporteur de cations organiques mis en évidence fonctionnellement à la BHE de la souris. Ce transporteur appartenant très probablement à la superfamille des solute carrier (SLC), fonctionne comme un antiport proton. Actuellement, sa présence ne peut être démontrée que de façon fonctionnelle car son identité moléculaire est encore inconnue. Cet antiport proton constitue un nouvel acteur de la perméabilité cérébrale et ouvre une nouvelle voie d’accès au cerveau. Nous nous sommes tout d’abord attachés à approfondir les connaissances fonctionnelles de ce transporteur en étudiant de nouveaux substrats et tissus d’expression. Le transport cérébral de psychotropes a été étudié in vivo par la technique de perfusion carotidienne in situ chez la souris et in vitro grâce à une lignée de cellules endothéliales cérébrales humaines immortalisées (hCMEC/D3). Nous avons démontré que la haute perméabilité cérébrale de la cocaïne fait intervenir à la fois une diffusion passive et surtout une diffusion médiée par un antiport proton. La vitesse d’entrée des substances d’abus dans le cerveau est associée à un plus fort risque d’addiction et fait de ce transporteur un nouvel acteur critique de la régulation du passage cérébral. En effet, d’autres substances comme la nicotine et certaines amphétamines comme le MDPV et l'ecstasy sont également des substrats de cet antiport. Ce transporteur apparaît comme une cible pharmacologique potentielle dans la prise en charge de toxicomanies. Malgré la diversité chimique et pharmacologique d’interactions des composés avec cet antiport, les concentrations nécessaires pour l’inhiber dépassent celles retrouvées dans le sang. Pour aider l’identification d’inhibiteurs sélectifs et efficaces nous avons développé un modèle pharmacophorique d’inhibiteurs du transporteur à partir de données générées in vitro et de l’approche FLAPpharm. Ce modèle semble prédictif de nouveaux composés pouvant constituer de meilleurs inhibiteurs de ce transporteur. L’étude des échanges in vivo au niveau du tissu nerveux nous a menés à étudier l’impact de transporteurs ABC et de l’antiport-proton au niveau cérébral et rétinien à l’aide de substances spécifiques ou de substrats mixtes comme le vérapamil. L’antiport proton est fonctionnel au niveau de la BHR et transporte notamment la clonidine, le DPH et le vérapamil. Cependant, dans le cas d’un substrat mixte P-gp et SLC (ex : vérapamil), ce transport d’influx n’est visible à la BHE que lorsque la P-gp est neutralisée. Au contraire, à la BHR l’influx lié à cet SLC est visible naturellement. L’impact de la P-gp à la BHR étant 6.3-fois plus faible ce processus est probablement moins masqué. Cette étude illustre la difficulté actuelle de prédire l’impact fonctionnel d’un transporteur pour des substrats multi-spécifiques et l’existence d’une priorisation du transport. Enfin, nous avons essayé d’identifier l’antiport proton au niveau moléculaire par une méthode de photo-activation à l’aide d’un composé adapté. Cette méthode s’est avérée efficace pour fixer une molécule sur le transporteur, permettant par la suite de l’isoler plus facilement. En conclusion, ce travail a permis de mettre en évidence l’importance de l’antiport proton dans la distribution cérébrale de psychotropes et d’ouvrir de nouvelles perspectives dans l’addiction et la compréhension du transport de substrats multi-spécifiques. / The central nervous system is a privilege organ protected by histological barriers between the blood and the nervous tissue. The blood-brain barrier (BBB) and the blood-retinal barrier (BRB) separate cerebral parenchyma and retina from the circulating blood and both express tight junctions and membrane transporters, allowing a precise regulation of the exchanges between the blood and nervous tissues. We studied a new cationic transporter functionally evidenced at the mouse BBB. This molecularly unknown transporter belong to the solute carrier super family (SLC) and is a proton antiporter. It could constitute a new actor in the cerebral permeability and may be a new brain access pathway. First, we worked on the functional identification studying new substrates and new localization. Psychotropic brain transport was studied in vivo by brain in situ perfusion on mouse and in vitro with human immortalized endothelial cells (hCMEC/D3). We showed that cocaine brain entry depends on passive diffusion but also mainly on a proton antiporter. Brain entry rate of drugs of abuse is associated with modulation of addiction liability, making this transporter a new component of brain entry of cocaine, and also nicotine and some amphetamines such as ecstasy and MDPV. This proton antiporter appears to be a new potential target in addiction. Various chemical entities interact with this transporter; however concentrations used to inhibit the transporter are much higher than the one possibly found in the blood. In order to help find or design new selective and potent inhibitors, we developed a pharmacophore model of the proton antiporter inhibitors using in vitro data and the FLAPpharm approach. The model predicts well new possible inhibitors of this transporter. We also studied the impact of the ABC transporters and the proton antiporter at the BBB and the BRB using specific or multi-specific substrates such as verapamil. The proton antiporter is functionally expressed at the BRB and transports clonidine, DPH and verapamil. However, for the multi-specific (P-gp and SLC) compound verapamil, influx transport by the proton antiporter is visible at the BBB only when P-gp efflux is neutralized. On the contrary, at the BRB, the proton antiporter influx is always visible. This is certainly due to the lower impact (by 6.3 fold) of P-gp at the BRB compared to the BBB. These results show the difficulty to predict the functional impact of a transporter for multi-specific compounds and a probable transport prioritization. Finally we worked on the molecular identification of the proton antiporter using a photolabeling method. This work evidenced the importance of the proton antiporter in the brain distribution of psychotropic and drugs of abuse and opened toward new perspectives in addiction and transport comprehension.
12

Identification fonctionnelle et moléculaire d'un transporteur de psychotropes et substances d'abus / Functional and molecular identification of a transporter of psychotropic and drugs of abuse

Chapy, Hélène 07 May 2015 (has links)
Le système nerveux central est un organe privilégié et protégé, notamment grâce à l’existence des barrières histologiques entre le sang et les tissus nerveux. La barrière-hémato encéphalique (BHE) et la barrière hémato-rétinienne (BHR) séparent respectivement le parenchyme cérébral et la rétine des composés contenus dans l’espace vasculaire, grâce à l’expression de jonctions serrées et de transporteurs membranaires permettant une régulation spécifique des échanges entre le sang et le parenchyme nerveux. Ce travail a porté sur l’étude d’un nouveau transporteur de cations organiques mis en évidence fonctionnellement à la BHE de la souris. Ce transporteur appartenant très probablement à la superfamille des solute carrier (SLC), fonctionne comme un antiport proton. Actuellement, sa présence ne peut être démontrée que de façon fonctionnelle car son identité moléculaire est encore inconnue. Cet antiport proton constitue un nouvel acteur de la perméabilité cérébrale et ouvre une nouvelle voie d’accès au cerveau. Nous nous sommes tout d’abord attachés à approfondir les connaissances fonctionnelles de ce transporteur en étudiant de nouveaux substrats et tissus d’expression. Le transport cérébral de psychotropes a été étudié in vivo par la technique de perfusion carotidienne in situ chez la souris et in vitro grâce à une lignée de cellules endothéliales cérébrales humaines immortalisées (hCMEC/D3). Nous avons démontré que la haute perméabilité cérébrale de la cocaïne fait intervenir à la fois une diffusion passive et surtout une diffusion médiée par un antiport proton. La vitesse d’entrée des substances d’abus dans le cerveau est associée à un plus fort risque d’addiction et fait de ce transporteur un nouvel acteur critique de la régulation du passage cérébral. En effet, d’autres substances comme la nicotine et certaines amphétamines comme le MDPV et l'ecstasy sont également des substrats de cet antiport. Ce transporteur apparaît comme une cible pharmacologique potentielle dans la prise en charge de toxicomanies. Malgré la diversité chimique et pharmacologique d’interactions des composés avec cet antiport, les concentrations nécessaires pour l’inhiber dépassent celles retrouvées dans le sang. Pour aider l’identification d’inhibiteurs sélectifs et efficaces nous avons développé un modèle pharmacophorique d’inhibiteurs du transporteur à partir de données générées in vitro et de l’approche FLAPpharm. Ce modèle semble prédictif de nouveaux composés pouvant constituer de meilleurs inhibiteurs de ce transporteur. L’étude des échanges in vivo au niveau du tissu nerveux nous a menés à étudier l’impact de transporteurs ABC et de l’antiport-proton au niveau cérébral et rétinien à l’aide de substances spécifiques ou de substrats mixtes comme le vérapamil. L’antiport proton est fonctionnel au niveau de la BHR et transporte notamment la clonidine, le DPH et le vérapamil. Cependant, dans le cas d’un substrat mixte P-gp et SLC (ex : vérapamil), ce transport d’influx n’est visible à la BHE que lorsque la P-gp est neutralisée. Au contraire, à la BHR l’influx lié à cet SLC est visible naturellement. L’impact de la P-gp à la BHR étant 6.3-fois plus faible ce processus est probablement moins masqué. Cette étude illustre la difficulté actuelle de prédire l’impact fonctionnel d’un transporteur pour des substrats multi-spécifiques et l’existence d’une priorisation du transport. Enfin, nous avons essayé d’identifier l’antiport proton au niveau moléculaire par une méthode de photo-activation à l’aide d’un composé adapté. Cette méthode s’est avérée efficace pour fixer une molécule sur le transporteur, permettant par la suite de l’isoler plus facilement. En conclusion, ce travail a permis de mettre en évidence l’importance de l’antiport proton dans la distribution cérébrale de psychotropes et d’ouvrir de nouvelles perspectives dans l’addiction et la compréhension du transport de substrats multi-spécifiques. / The central nervous system is a privilege organ protected by histological barriers between the blood and the nervous tissue. The blood-brain barrier (BBB) and the blood-retinal barrier (BRB) separate cerebral parenchyma and retina from the circulating blood and both express tight junctions and membrane transporters, allowing a precise regulation of the exchanges between the blood and nervous tissues. We studied a new cationic transporter functionally evidenced at the mouse BBB. This molecularly unknown transporter belong to the solute carrier super family (SLC) and is a proton antiporter. It could constitute a new actor in the cerebral permeability and may be a new brain access pathway. First, we worked on the functional identification studying new substrates and new localization. Psychotropic brain transport was studied in vivo by brain in situ perfusion on mouse and in vitro with human immortalized endothelial cells (hCMEC/D3). We showed that cocaine brain entry depends on passive diffusion but also mainly on a proton antiporter. Brain entry rate of drugs of abuse is associated with modulation of addiction liability, making this transporter a new component of brain entry of cocaine, and also nicotine and some amphetamines such as ecstasy and MDPV. This proton antiporter appears to be a new potential target in addiction. Various chemical entities interact with this transporter; however concentrations used to inhibit the transporter are much higher than the one possibly found in the blood. In order to help find or design new selective and potent inhibitors, we developed a pharmacophore model of the proton antiporter inhibitors using in vitro data and the FLAPpharm approach. The model predicts well new possible inhibitors of this transporter. We also studied the impact of the ABC transporters and the proton antiporter at the BBB and the BRB using specific or multi-specific substrates such as verapamil. The proton antiporter is functionally expressed at the BRB and transports clonidine, DPH and verapamil. However, for the multi-specific (P-gp and SLC) compound verapamil, influx transport by the proton antiporter is visible at the BBB only when P-gp efflux is neutralized. On the contrary, at the BRB, the proton antiporter influx is always visible. This is certainly due to the lower impact (by 6.3 fold) of P-gp at the BRB compared to the BBB. These results show the difficulty to predict the functional impact of a transporter for multi-specific compounds and a probable transport prioritization. Finally we worked on the molecular identification of the proton antiporter using a photolabeling method. This work evidenced the importance of the proton antiporter in the brain distribution of psychotropic and drugs of abuse and opened toward new perspectives in addiction and transport comprehension.
13

Identification fonctionnelle et moléculaire d'un transporteur de psychotropes et substances d'abus / Functional and molecular identification of a transporter of psychotropic and drugs of abuse

Chapy, Hélène 07 May 2015 (has links)
Le système nerveux central est un organe privilégié et protégé, notamment grâce à l’existence des barrières histologiques entre le sang et les tissus nerveux. La barrière-hémato encéphalique (BHE) et la barrière hémato-rétinienne (BHR) séparent respectivement le parenchyme cérébral et la rétine des composés contenus dans l’espace vasculaire, grâce à l’expression de jonctions serrées et de transporteurs membranaires permettant une régulation spécifique des échanges entre le sang et le parenchyme nerveux. Ce travail a porté sur l’étude d’un nouveau transporteur de cations organiques mis en évidence fonctionnellement à la BHE de la souris. Ce transporteur appartenant très probablement à la superfamille des solute carrier (SLC), fonctionne comme un antiport proton. Actuellement, sa présence ne peut être démontrée que de façon fonctionnelle car son identité moléculaire est encore inconnue. Cet antiport proton constitue un nouvel acteur de la perméabilité cérébrale et ouvre une nouvelle voie d’accès au cerveau. Nous nous sommes tout d’abord attachés à approfondir les connaissances fonctionnelles de ce transporteur en étudiant de nouveaux substrats et tissus d’expression. Le transport cérébral de psychotropes a été étudié in vivo par la technique de perfusion carotidienne in situ chez la souris et in vitro grâce à une lignée de cellules endothéliales cérébrales humaines immortalisées (hCMEC/D3). Nous avons démontré que la haute perméabilité cérébrale de la cocaïne fait intervenir à la fois une diffusion passive et surtout une diffusion médiée par un antiport proton. La vitesse d’entrée des substances d’abus dans le cerveau est associée à un plus fort risque d’addiction et fait de ce transporteur un nouvel acteur critique de la régulation du passage cérébral. En effet, d’autres substances comme la nicotine et certaines amphétamines comme le MDPV et l'ecstasy sont également des substrats de cet antiport. Ce transporteur apparaît comme une cible pharmacologique potentielle dans la prise en charge de toxicomanies. Malgré la diversité chimique et pharmacologique d’interactions des composés avec cet antiport, les concentrations nécessaires pour l’inhiber dépassent celles retrouvées dans le sang. Pour aider l’identification d’inhibiteurs sélectifs et efficaces nous avons développé un modèle pharmacophorique d’inhibiteurs du transporteur à partir de données générées in vitro et de l’approche FLAPpharm. Ce modèle semble prédictif de nouveaux composés pouvant constituer de meilleurs inhibiteurs de ce transporteur. L’étude des échanges in vivo au niveau du tissu nerveux nous a menés à étudier l’impact de transporteurs ABC et de l’antiport-proton au niveau cérébral et rétinien à l’aide de substances spécifiques ou de substrats mixtes comme le vérapamil. L’antiport proton est fonctionnel au niveau de la BHR et transporte notamment la clonidine, le DPH et le vérapamil. Cependant, dans le cas d’un substrat mixte P-gp et SLC (ex : vérapamil), ce transport d’influx n’est visible à la BHE que lorsque la P-gp est neutralisée. Au contraire, à la BHR l’influx lié à cet SLC est visible naturellement. L’impact de la P-gp à la BHR étant 6.3-fois plus faible ce processus est probablement moins masqué. Cette étude illustre la difficulté actuelle de prédire l’impact fonctionnel d’un transporteur pour des substrats multi-spécifiques et l’existence d’une priorisation du transport. Enfin, nous avons essayé d’identifier l’antiport proton au niveau moléculaire par une méthode de photo-activation à l’aide d’un composé adapté. Cette méthode s’est avérée efficace pour fixer une molécule sur le transporteur, permettant par la suite de l’isoler plus facilement. En conclusion, ce travail a permis de mettre en évidence l’importance de l’antiport proton dans la distribution cérébrale de psychotropes et d’ouvrir de nouvelles perspectives dans l’addiction et la compréhension du transport de substrats multi-spécifiques. / The central nervous system is a privilege organ protected by histological barriers between the blood and the nervous tissue. The blood-brain barrier (BBB) and the blood-retinal barrier (BRB) separate cerebral parenchyma and retina from the circulating blood and both express tight junctions and membrane transporters, allowing a precise regulation of the exchanges between the blood and nervous tissues. We studied a new cationic transporter functionally evidenced at the mouse BBB. This molecularly unknown transporter belong to the solute carrier super family (SLC) and is a proton antiporter. It could constitute a new actor in the cerebral permeability and may be a new brain access pathway. First, we worked on the functional identification studying new substrates and new localization. Psychotropic brain transport was studied in vivo by brain in situ perfusion on mouse and in vitro with human immortalized endothelial cells (hCMEC/D3). We showed that cocaine brain entry depends on passive diffusion but also mainly on a proton antiporter. Brain entry rate of drugs of abuse is associated with modulation of addiction liability, making this transporter a new component of brain entry of cocaine, and also nicotine and some amphetamines such as ecstasy and MDPV. This proton antiporter appears to be a new potential target in addiction. Various chemical entities interact with this transporter; however concentrations used to inhibit the transporter are much higher than the one possibly found in the blood. In order to help find or design new selective and potent inhibitors, we developed a pharmacophore model of the proton antiporter inhibitors using in vitro data and the FLAPpharm approach. The model predicts well new possible inhibitors of this transporter. We also studied the impact of the ABC transporters and the proton antiporter at the BBB and the BRB using specific or multi-specific substrates such as verapamil. The proton antiporter is functionally expressed at the BRB and transports clonidine, DPH and verapamil. However, for the multi-specific (P-gp and SLC) compound verapamil, influx transport by the proton antiporter is visible at the BBB only when P-gp efflux is neutralized. On the contrary, at the BRB, the proton antiporter influx is always visible. This is certainly due to the lower impact (by 6.3 fold) of P-gp at the BRB compared to the BBB. These results show the difficulty to predict the functional impact of a transporter for multi-specific compounds and a probable transport prioritization. Finally we worked on the molecular identification of the proton antiporter using a photolabeling method. This work evidenced the importance of the proton antiporter in the brain distribution of psychotropic and drugs of abuse and opened toward new perspectives in addiction and transport comprehension.
14

Acheminement et chimiorésistance, deux grandes limitations dans le traitement des tumeurs cérébrales

Blanchette, Marie January 2014 (has links)
Les gliomes malins constituent les tumeurs cérébrales primaires les plus agressives et le glioblastome (GBM) est la plus fréquente et agressive d’entre elles. La survie médiane associée n’est que de 14,6 mois. Dû au caractère hautement invasif de ces tumeurs, la résection maximale de la tumeur doit impérativement être suivie de traitement de radio- et/ou chimiothérapie. Cependant, la présence de la barrière hématoencéphalique et des mécanismes de chimiorésistance, tels que les pompes à efflux, limitent l’acheminement et l’efficacité des composés aux cellules tumorales. L’ouverture osmotique de la barrière hématoencéphalique (OBHE) a été développée afin d’améliorer l’acheminement d’agents anti-néoplasiques au cerveau et à la tumeur. Bien que plusieurs études aient été effectuées afin de caractériser son processus, beaucoup d’informations restent à découvrir afin d’approfondir nos connaissances sur l’OBHE et améliorer son application en clinique. Avec l’objectif ultime de contourner ces deux obstacles, j’ai caractérisé le processus dynamique de l’OBHE pour deux molécules de tailles différentes par imagerie par résonance magnétique dynamique, ainsi que pour une molécule étant un substrat des pompes à efflux par tomographie d’émission par positron dans le modèle murin Fischer-F98. J’ai également étudié l’expression et la localisation de différentes pompes à efflux par PCR quantitative et immunohistochimie dans des spécimens de gliomes malins. Les résultats obtenus démontrent que la barrière hémato-tumorale limite l’acheminement à la tumeur de composés de différent poids moléculaire. L’acheminement au parenchyme cérébral et à la tumeur suite à une procédure d’OBHE est aussi dépendant du poids moléculaire et de la taille de la molécule à acheminer. L’OBHE à moins d’être de qualité excellente, ne semble pas suffisante pour acheminer au parenchyme cérébral des substrats des pompes à efflux. Les GBM expriment la MRP1, MRP3 et BCRP à différents niveaux. La PGP, MRP1 et BCRP sont exprimées par les cellules endothéliales des microvaisseaux cérébraux. L’ensemble de ces résultats suggère que l’administration d’agents thérapeutiques suite à la procédure d’OBHE doit être optimisée selon l’agent administré et que l’inhibition de pompes à efflux ou une autre stratégie rendant les agents de chimiothérapie invisibles aux pompes à efflux sera bénéfique pour améliorer leur acheminement au système nerveux central et aux cellules tumorales.
15

Transcytose à travers la barrière hémato-encéphalique : étude in vitro du transport des lipoproteines de basse densité et du peptide ß-amyloïde / Transcytosis through the blood brain barrier : in vitro studies of the transport of low density lipoprotein and ß-amyloid peptide

Candela, Pietra 03 December 2010 (has links)
La Barrière Hémato-Encéphalique (BHE) est une interface localisée au niveau des cellules endothéliales des capillaires cérébraux (CECs). Elle présente des caractéristiques structurales et métaboliques spécifiques restreignant considérablement les échanges entre le sang et le cerveau dans le but de maintenir l’homéostasie du système nerveux central (SNC). La présence de transporteurs et récepteurs au niveau de CECs permet l’apport de nutriments essentiels au fonctionnement cérébral. L’expression de ces propriétés est induite par l’environnement cérébral et notamment par la population astrocytaire. Dans notre laboratoire, la BHE est reconstituée in vitro en co-cultivant des CECs bovines et des cellules gliales primaires de rat reproduisant les principales caractéristiques de la BHE in vivo. Son utilisation a permis de mettre en évidence une voie originale de transcytose (récepteur-dépendante) assurant le transport des lipoprotéines de basse densité (LDL) vers le parenchyme cérébral. Nous avons caractérisé les premières étapes de ce processus et démontré que celles-ci impliquent des structures cellulaires spécialisées comme les cavéoles et les cavéosomes, permettant aux lipoprotéines d’être relarguées intactes vers le compartiment cérébral. Récemment, de nombreux travaux ont placé la BHE au centre des échanges des peptides β-amyloïde (Aβ) entre le sang et le cerveau. Un défaut des mécanismes de transport est suspecté d’être à l’origine de l’accumulation cérébrale de ces peptides responsables de la maladie d’Alzheimer (MA). En utilisant notre modèle in vitro de BHE, nous avons étudié l’implication des CECs dans les échanges de ces peptides. Nous avons démontré l’implication du récepteur « receptor for advanced glycation end-products » (RAGE) dans l’entrée vers le compartiment cérébral des peptides Aβ. Ce transport est spécifique et implique la voie des cavéoles. L’implication de pompes d’efflux telles que la P-glycoprotéine (P-gp) et la « breast cancer resistance protein » (BCRP) dans la restriction de l’influx des peptides Aβ a également été mise en évidence. D’autre part, des résultats préliminaires suggèrent que le récepteur « low density lipoprotein receptor-related 1 » (LRP1) n’est pas impliqué dans l’efflux des peptides Aβ. Ces résultats contribuent à apporter une meilleure compréhension du rôle de la BHE dans la MA et permettent d’envisager de nouvelles approches thérapeutiques. / The blood-brain barrier (BBB) is a dynamic interface located at the brain capillary endothelial cells (BCECs) level. This barrier possesses some morphological and enzymatic properties whose aim is to maintain homeostasis of central nervous system (CNS) by firmly reducing the passages between blood and brain. BCECs express carrier-mediated transporters and receptors allowing the income of nutrients that are essential to brain function. These BBB properties come from brain environment and especially from the astrocytic population. In our laboratory, we have developed an in vitro BBB model consisting of a co-culture of bovine BCECs and new-born rat glial cells that closely mimics the in vivo situation. In this in vitro model, an original transcytosis pathway (receptor-dependent) that ensures low density lipoproteins (LDL) transport into the brain parenchyma has been discovered. We have characterized the first steps of this transport and we have shown that involve specialized cellular structures such as caveolae and caveosomes, allowing intact lipoproteins to be released into the brain compartment. Recently, many studies have considered the BBB like a very suitable site for the exchanges of amyloid β (Aβ) peptides between blood and brain. An alteration in the mechanisms of transport is suspected to result in cerebral accumulation of these peptides which are responsible for Alzheimer's Disease (AD). Using our in vitro model, we investigated the involvement of the BCECs in the exchanges of these peptides. Our works show an asymmetrical transport across the BBB suggesting the involvement of specific receptors and transporters. We have demonstrated the involvement of « receptor for advanced glycation end products » (RAGE) in the entry into the brain compartment. This transport is specific and involves the caveolae’s pathway. The involvement of P-glycoprotein (P-gp) and « breast cancer resistance protein » (BCRP) efflux pumps in restricting the influx of Aβ peptides was also highlighted. Moreover, preliminary results suggest that « low density lipoprotein receptor related-1 » (LRP1) is not involved in the efflux of Aβ peptides. These studies help to provide a better understanding of the role of the BBB in AD and allow to consider new therapeutic approaches.
16

Effets des polyphénols du thé vert et de la radiothérapie sur la progression et la résistance tumorale dans un modèle in vivo de glioblastome

Khoueir, Paul January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
17

Conditionnement tumoral des cellules endothéliales cérébrales : effet sur la survie cellulaire, la migration et l'angiogenèse

Laroche, Mathieu January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
18

Analyse protéomique différentielle des cellules endothéliales de la barrière hémato-encéphalique : identification de protéines induites par les cellules gliales / Differential proteomic analysis of blood-brain barrier endothelial cells : identification of glial cells-induced proteins

Deracinois, Barbara 19 December 2012 (has links)
En contrôlant le passage para- et transcellulaire des composés du sang vers le cerveau (et inversement), la barrière hémato-encéphalique (BHE) constitue la « gardienne » du compartiment cérébral. Bien que relativement connu dans son aspect physiologique, le phénotype BHE des cellules endothéliales des capillaires cérébraux (BCECs) reste mal compris au regard des mécanismes moléculaires qui gouvernent son établissement et son maintien. Dans cette optique, à l’aide du modèle in vitro de BHE développé au laboratoire (co-culture de BCECs bovines et de cellules gliales de rats), nous avons réalisé deux études protéomiques comparatives afin d’identifier les protéines cytoplasmiques potentiellement impliquées dans l’induction et le maintien de ce phénotype: d’une part une approche qualitative sans marquage (label free) et d’autre part une approche quantitative grâce à un marquage isotopique préalable des protéines (isotope-coded protein label, ICPL). Les deux approches, label free et ICPL se sont révélées complémentaires et ont permis, respectivement, l’identification de 447 et de 412 protéines (dont 290 quantifiées). Quatre protéines d’un intérêt particulier dans le domaine de la BHE (phosphatase alcaline tissu-non spécifique, TNAP ; protéine 1 possédant un domaine d’homologie à Eps15, EHD1 ; superoxyde dismutase, SODC et homologue 7 de la protéine de la maladie de Parkinson PARK7, DJ-1) ont fait l’objet de caractérisations biochimiques approfondies et ouvrent des pistes d’investigation sur des potentielles voies cellulaires induites par les cellules gliales et impliquées dans le phénotype BHE. / The blood-brain barrier (BBB) controls the para- and transcellular crossing of compounds from blood to brain (and inversely) and establishes the “gatekeepers” of the brain. The major part of therapeutic drugs developed to fight the brain diseases is deemed inefficient in vivo due to the presence of the BBB that they are unable to cross. Although relatively well known in its physiological aspect, the BBB phenotype of brain capillary endothelial cells (BCECs) remains largely under known and misunderstood in regards of the molecular mechanisms that govern its establishment and its maintenance. To this goal, using the in vitro BBB model developed in the laboratory (co-culture of bovine BCECs with rat glial cells), we performed two differential proteomic studies to identify the main cytoplasmic proteins involved in the establishment and maintenance of this phenotype: a qualitative label free approach and a quantitative isotope-coded protein labeling (ICPL) approach.The two different approaches, label free and ICPL, are complementary and led to the identification of 447 and 412 proteins, respectively. Four proteins of particular interest for BBB (tissue-non specific alkaline phosphatase, TNAP; Eps15 homology domain containing protein 1, EHD1; superoxide dismutase, SODC and Parkinson disease protein 7 homolog PARK7, DJ-1) have been more deeply studied and they open new discovery prospects related to cellular pathways induced by glial cells and involved in the BBB phenotype.
19

Pharmacocinétique et optimisation galénique de dithiarsolanes à visée antileucémique : exemple des nanosuspensions d'arsthinol / Pharmacokinetics and formulation improvement of dithiarsolanes for the treatment of leukemia : exemple of arsthinol nanosuspensions

Ajana, Imane 30 March 2010 (has links)
L'arsthinol est un organoarsénié qui a été utilisé dans les années 1950 dans le traitement de l'amibiase et en dermatologie (pian). Ce composé commercialisé sous le nom de Balarsen® était relativement bien toléré en clinique. Récemment, des essais in vitro ont montré que l'arsthinol était plus actif sur les cellules leucémiques (U937 et K562) que le trioxyde d'arsenic inorganique et le mélarsoprol. Dans notre travail, l'activité antileucémique de l'arsthinol a été évaluée sur les cellules NB4 de leucémie aiguë promyélocytaire (LAM3). Nous avons constaté que ce composé inhibait la croissance et induisait l'apoptose de ces cellules à des concentrations = 5µM. Cette activité sur les cellules NB4 est à peu près équivalente à celle obtenue avec le trioxyde d'arsenic. Nous avons par ailleurs mis au point des nanosuspensions d'arsthinol qui ont permis de diminuer considérablement les concentrations cérébrales en arsenic après injection I.V. chez la souris. A l'inverse, les concentrations d'arsenic dans la moelle osseuse sont restées importantes. De plus, l'arsthinol sous forme des nanosuspensions reste toujours actif sur les cellules NB4 de LAM3. En conséquence, cette distribution tissulaire des nanosuspensions d'arsthinol est plutôt avantageuse pour l'activité antileucémique de l'arsthinol. Enfin, nous avons identifié les métabolites de l'arsthinol dans l'urine de souris par CLHP-SM. Cette étude nous a permis de compléter la connaissance du métabolisme de l'arsthinol et de son élimination. / The organoarsenical arsthinol (Balarsen®) was used in the 1950s in the treatment of amoebiasis and in dermatology and was considered as ‘highly tolerated'. Recent investigations have shown a very good efficiency of arsthinol on leukemic cells (U937 and K562) as compared with arsenic trioxide and melarsoprol. In the present work, we have assessed the anti-leukemic activity of arsthinol on acute promyelocytic leukemia NB4 cells as compared with As2O3. Our results have shown that arsthinol and As2O3 induced growth inhibition and apoptosis at low concentrations = 5µM. Arsthinol is a promising drug for leukemia. However, this dithiarsolane is very poorly soluble in water. An alternative approach to overcoming problems such as solubility, local intolerability and risks of neurotoxicity is to develop nanosuspensions of the drug. The use of nanosuspensions of arsthinol after I.V. injection in mice has allowed us to reduce the cerebral concentration of the arsenical. In contrast, bone-marrow concentrations remained very high. Moreover, arsthinol nanosuspensions remained cytotoxic on NB4 cells. Finally, we have determined the metabolites of arsthinol in urine of mice. This study allowed us to complete the understanding on the mechanism of biotransformation and the elimination pathways of the drug.
20

Rôle de la présentation antigénique par les cellules endothéliales de la barrière hémato-encéphalique dans les pathologies inflammatoires affectant le système nerveux central / Role of antigen presentation by endothelial cells of the blood-brain barrier in inflammatory diseases affecting the central nervous system

Meyer, Céline 02 July 2018 (has links)
Les cellules endothéliales (CE) de la barrière hémato-encéphalique (BHE) ont une position cruciale à l'interface entre le système nerveux central (SNC) et les cellules circulantes du système immunitaire. Les lymphocytes T (LT) CD8 et CD4 sont des acteurs clés de la réponse immunitaire adaptative impliqués dans la physiopathologie de maladies inflammatoires du système nerveux central (SNC). Au cours de leur transmigration vers le SNC les LT interagissent avec les CE de la BHE. Ces cellules expriment des molécules de CMH de classe I et pourraient présenter des antigènes aux LTCD8, affectant ainsi leur comportement. L'objectif de mon projet de Thèse est de déterminer le rôle de la présentation antigénique par les CE de la BHE dans les maladies inflammatoires du SNC. Nous avons développé un modèle murin transgénique permettant l'expression conditionnelle par les CE de la BHE d'un antigène, l'hémagglutinine du virus Influenza (HA), permettant d'analyser in vitro et in vivo les interactions entre des LT spécifiques d'HA et les CE exprimant ou non l'antigène HA. La première partie du travail a consisté à déterminer si des LTCD8 activés spécifiques d'HA transférés dans les souris receveuses pouvaient être responsables d'une maladie inflammatoire du SNC liée à l'expression par la BHE de l'antigène cible. Les souris receveuses dont les CE de la BHE expriment HA, mais pas celles dont les CE n'expriment pas HA, développent après transfert un phénotype clinique causé par une apoptose des CE induite par des LTCD8 cytotoxiques et associé à des dommages tissulaires de la BHE et du SNC, témoignant que l'expression d'un antigène par la BHE peut induire une réponse immunitaire délétère affectant le SNC. La constatation chez ces souris d'une atteinte rétinienne et de l'oreille interne associée à la pathologie endothéliale de la BHE a permis de faire le rapprochement avec le syndrome de Susac, pathologie humaine orpheline liée à une atteinte endothéliale des vaisseaux du SNC, de la rétine et de l'oreille interne. La collaboration avec une équipe allemande a permis une analyse comparative entre notre modèle murin et des données immunologiques et anatomopathologiques issues de patients atteints d'un syndrome de Susac soulignant le rôle des LTCD8 cytotoxiques comme acteurs clefs des dommages endothéliaux observés dans le Susac, et sa probable nature auto-immune. Le bénéfice dans notre modèle de l'utilisation d'anticorps monoclonaux ciblant l'intégrine a4 permet de proposer dans le syndrome de Susac des perspectives thérapeutiques innovantes. La deuxième partie de ce travail était de déterminer si les CE de la BHE pouvaient se comporter comme des cellules présentatrices d'antigènes vis à vis des LT. Le transfert de LT CD8 spécifiques d'HA naïfs était associé, uniquement dans les souris receveuses dont les CE de la BHE exprimaient HA, à une prolifération des LTCD8 au niveau des organes lymphoïdes. / Endothelial cells (EC) of the blood brain barrier (BBB) have a crucial position at the interface between the central nervous system (CNS) and circulating cells of the immune system. CD8 and CD4 T cells are key actors of the adaptive immune response involved in pathophysiology of CNS inflammatory diseases. T cells interact with EC of the BBB during the transmigration course to the CNS. EC express MHC class I and can present antigens to CD8 T cells, affecting their behavior. In this context, our study aimed to determine the role of antigen presentation by EC of the BBB in CNS inflammatory diseases. We have developed a transgenic mouse model allowing conditional expression of a neo-antigen, Hemagglutinin of Influenza virus (HA) by EC of the BBB, allowing in vitro and in vivo analysis of the interactions between HA- specific T cells and EC expressing or not the HA antigen. In the first part of the work, we asked whether activated HA-specific CD8 T cells transferred in recipient mice could be responsible of CNS inflammatory disease linked to the expression of target antigen by the BBB. Recipient mice, which EC express HA, but not the control mice, which do not express HA, displayed apoptosis of EC and associated BBB and CNS tissue damages, resulting in development of clinical phenotype, showing that the expression of an antigen by the BBB can induce a deleterious immune response affecting the CNS. The finding in these mice of retinal and inner ear damages associated with BBB endothelial pathology enabled us to compare with Susac syndrome, an orphan human pathology associated with endothelial damages on CNS microvessels, branch retinal artery occlusions, and sensorineural hearing loss. The collaboration with a German team allowed a comparative analysis between our model and immunological and pathological data from patients with Susac Syndrome, highlighting the role of cytotoxic CD8 T cells as key players in endothelial damages observed in Susac syndrome, and the probable autoimmune nature of this pathology. The benefit in our model of the use of monoclonal antibody targeting a4 integrin allowed us to propose an innovative therapeutic perspective in Susac syndrome. The second part of the work was to determine if EC of BBB could behave as antigen presenting cells (APC) to T cells. Transfer of naïve HA-specific CD8 T cells was associated, only in recipient mice whose BBB EC expressed HA, to a proliferation of CD8 T cells in lymphoid organs. This observation reflected antigen accessibility to CD8 T cells recognition and the ability of EC of the BBB to provide the necessary signals in vivo for the activation and proliferation of transferred naïve HA-specific CD8 T cells, without being responsible for significative tissue damage to the CNS. From the transgenic mouse model we have developed a coculture model allowing in vitro analysis of the antigen presentation capacities by EC of BBB to HA-specific T cells, and the consequences on T cells activation. Our data showed that HA expression by BBB EC cultured in vitro is sufficient for activation of naïve HA-specific CD8 T cells, but is not associated with their proliferation. My Thesis work showed therefore that besides the role as anatomical barrier of the CNS, the BBB EC are involved in pathophysiology of CNS inflammatory diseases, and can behave like semi-professional antigen presenting cells participating in immune response regulation affecting the CNS.

Page generated in 0.0576 seconds