Spelling suggestions: "subject:"halbleitermaterialien.""
1 |
Research joint ventures, innovation and multiproduct competitionSiebert, Ralph. January 2000 (has links) (PDF)
Berlin, Humboldt-University, Diss., 2000.
|
2 |
Early-mover positions : antecedents and performance consequences /Wyss, Christina Elisabeth. January 2006 (has links) (PDF)
Univ., Diss.--St. Gallen, 2006.
|
3 |
Direkte Bestimmung von Eisenspuren in Dichlorsilan mit Hilfe der Graphitrohrofen-Atomabsorptionsspektrometrie (GF-AAS)Benninghoff, Claus. January 2004 (has links) (PDF)
Duisburg, Essen, Universiẗat, Diss., 2004.
|
4 |
Simulationsbasierte Reihenfolgeplanung in der Halbleiterindustrie /Thiel, Matthias. January 2001 (has links)
Techn. Universiẗat, Diss.--Ilmenau, 2001.
|
5 |
Early-mover positions : antecedents and performance consequences /Wyss, Christina E. January 2006 (has links)
Thesis (doctoral)--Universität St. Gallen, 2006.
|
6 |
Absicherung von Preis- und Wechselkursrisiken in volatilen Märkten : am Beispiel der Halbleiterindustrie /Ulukut, Cem. January 2008 (has links)
Zugl.: Augsburg, Universiẗat, Diss., 2008.
|
7 |
Innovation and industry structure : how Silicon intellectual property revolutionizes the semiconductor industry /Kästner, Matthias. January 2003 (has links) (PDF)
Univ., Diss.--St. Gallen, 2002.
|
8 |
Spezielle Anwendungen der Transmissionselektronenmikroskopie in der SiliziumhalbleiterindustrieMühle, Uwe 17 February 2015 (has links) (PDF)
Die außerordentlichen Steigerungen der Funktionalität und Produktivität in der Halbleiterindustrie sind zum wesentlichen Teil auf eine Verkleinerung der Strukturdetails auf einer logarithmischen Skala über die letzten Jahrzehnte zurückzuführen. Sowohl zur Kontrolle des Fertigungsergebnisses als auch zur Klärung von Fehlerursachen ist die Nutzung transmissionselektronenmikroskopischer Methoden unabdingbar. Für die Zielpräparation von Halbleiterstrukturen sind Techniken unter Nutzung der Focused Ion Beam Geräte etabliert, die je nach der konkreten Aufgabenstellung variiert werden. Die Abbildung von Strukturdetails mit Abmessungen von wenigen Nanometern erfordert die Anwendung unterschiedlicher Kontrastmechanismen. Die Ergänzung der Abbildung durch die analytischen Techniken der energiedispersiven Röntgenmikroanalyse und der Elektronenenergieverlustanalyse ist ein wertvolles Werkzeug bei der Klärung von Fehlerursachen oder bei prozesstechnischen Fragestellungen. Die Nutzung der Rastertransmissionselektronenmikroskopie erlaubt die unmittelbare Kombination von Abbildung und Elementanalyse.
Die lokale Verteilung von Dotierstoffen als wesentliche Grundlage für die Funktion von Bauelementen in der Halbleiterindustrie ist nur über ihre Auswirkung auf die Phase der transmittierten Elektronenwelle nachweisbar. Mittels Elektronenholographie kann dieser Einfluss gemessen werden und das Prozessergebnis von Implantationen dargestellt werden. Für die Charakterisierung von Details, die kleiner als die Probendicken sind, die im TEM genutzt werden, ist die Anwendung der Elektronentomographie ein geeignetes Werkzeug. Dazu sind spezielle Präparations- und Abbildungsstrategien erforderlich. / The strong improvements in functionality and productivity in the semiconductor industry are mostly a result of the decrease of structural details on a logarithmic scale during the last decades. The monitoring of the production process, as well as failure analyses, utilize methods of transmission electron microscopy. For targeted preparations of semiconductor structures, techniques based on focused ion beams are established, with adaptions to the current task. The imaging of structural details with dimensions of a few nanometers requires the application of different contrast techniques, depending on the detailed request. Different opportunities of elemental analysis, such as energy dispersive X-ray analysis or electron energy loss analysis, deliver additional information about the chemical composition and binding states on a nanoscale. The use of scanning transmission electron microscopy enables a direct combination of imaging and elemental analysis.
The local distribution of dopants, as one of the major basics for the function of semiconductor devices, can be observed via the phase shift of the transmitted electron wave only. This influence requires the application of electron holography, a technique which enables the visualization of the process result of implantations or diffusion processes. The characterization of details which are smaller than the thickness of a TEM-sample is enabled through the use of electron tomography. This technique requires special strategies for preparation and imaging and delivers a 3D-dataset, describing the structure.
|
9 |
Process Window Challenges in Advanced Manufacturing: New Materials and Integration SolutionsFox, Robert, Augur, Rod, Child, Craig, Zaleski, Mark 22 July 2016 (has links) (PDF)
With the continued progression of Moore’s law into the sub-14nm technology nodes, interconnect RC and power dissipation scaling play an increasingly important role in overall product performance. As critical dimensions in the mainstream Cu/ULK interconnect system shrink below 30nm, corresponding increases in relative process variation and decreases in overall process window mandate increasingly complex integrated solutions. Traditional metallization processes, e.g. PVD barrier and seed layers, no longer scale for all layout configurations as they reach physical and geometric limitations. Interactions between design, OPC, and patterning also play more and more critical roles with respect to reliability and yield in volume manufacturing; stated simply, scaling is no longer “business as usual”. Restricted design layouts, prescriptive design rules, novel materials, and holistic integration solutions each therefore become necessary to maximize available process windows, thus enabling new generations of cost-competitive products in the marketplace.
|
10 |
Architecture of an Intelligent Test Error Detection AgentKirmse, Matthias, Petersohn, Uwe 20 February 2012 (has links) (PDF)
In this paper we present the architecture of an intelligent test error detection agent that is able to independently supervise the test process. By means of rationally applied bin and cause specific retests it should detect and correct the majority of test errors with minimal additional test effort. To achieve this, the agent utilizes test error models learned from historical example data to rate single wafer runs. The resulting run specific test error hypotheses are sequentially combined with information gained from regular and ordered retests in order to infer and update a global test error hypothesis. Based on this global hypothesis the agent decides if a test error exists, what its most probable cause is and which bins are affected. Consequently, it is able to initiate proper retests to check the inferred hypothesis and if necessary correct the affected test runs. The paper includes a description of the general architecture and discussions about possible test error models, the inference approach to generate the test error hypotheses from the given information and a possible set of rules to act upon the inferred hypothesis.
|
Page generated in 0.2418 seconds