31 |
Consecutive radio labelings and the Cartesian product of graphsNiedzialomski, Amanda Jean 01 July 2013 (has links)
For k∈{Z}+ and G a simple connected graph, a k-radio labeling f:VG→Z+ of G requires all pairs of distinct vertices u and v to satisfy |f(u)-f(v)|≥ k+1-d(u,v). When k=1, this requirement gives rise to the familiar labeling known as vertex coloring for which each vertex of a graph is labeled so that adjacent vertices have different "colors". We consider k-radio labelings of G when k=diam(G). In this setting, no two vertices can have the same label, so graphs that have radio labelings of consecutive integers are one extreme on the spectrum of possibilities; graphs that can be labeled with such a labeling are called radio graceful. In this thesis, we give four main results on the existence of radio graceful graphs, which focus on Hamming graphs (Cartesian products of complete graphs) and a generalization of the Petersen graph. In particular, we prove the existence of radio graceful graphs of arbitrary diameter, a result previously unknown. Two of these main results show that, under certain conditions, the tth Cartesian power Gt of a radio graceful graph G is also radio graceful. We will also speak to occasions when Gt is not radio graceful despite G being so, as well as some partial results about necessary and sufficient conditions for a graph G so that Gt is radio graceful.
|
32 |
Bezdrátový přenos dat v pásmu ISM / Wireless data transfer in the ISM bandČanda, Pavel January 2010 (has links)
Wireless extension of serial communication of RS232 standard, with using RF transceivers RFM12BP type, with transmissions errors correction. Device will be batery powered and low power consumption is required.
|
33 |
Codes Related to and Derived from Hamming GraphsMuthivhi, Thifhelimbilu Ronald January 2013 (has links)
>Magister Scientiae - MSc / For integers n, k 2:: 1, and k ~ n, the graph r~has vertices the 2n vectors of lF2 and adjacency defined by two vectors being adjacent if they differ in k coordinate positions. In particular, r~is the classical n-cube, usually denoted by Hl (n, 2). This study examines the codes (both binary and p-ary for p an odd prime) of the row span of adjacency and incidence matrices of these graphs. We first examine codes of the adjacency matrices of the n-cube. These have been considered in [14]. We then consider codes generated by both incidence and adjacency matrices of the Hamming graphs Hl(n,3) [12]. We will also consider codes of the line graphs of the n-cube as in [13]. Further, the automorphism groups of the codes, designs and graphs will be examined, highlighting where there is an interplay. Where possible, suitable permutation decoding sets will be given.
|
34 |
A Mathematical Growth Model of the Viral Population in Early HIV-1 InfectionsGiorgi, Elena Edi 01 September 2011 (has links)
In this thesis we develop a mathematical model to describe HIV-1 evolution during the first stages of infection (approximately within 40-60 days since onset), when one can assume exponential growth and random accumulation of mutations under a neutral drift. We analyze the Hamming distance (HD) distribution under different models (synchronous and asynchronous) in the absence of selection and recombination. In the second part of the thesis, we introduce recombination and develop a combinatorial approach to estimate the new HD distribution. We conclude describing a T statistic to test significance differences between the HD of two genetic samples, which we derive using U-statistics.
|
35 |
On the Bandwidth of a Product of Complete GraphsAppelt, Eric Andrew 03 February 2003 (has links)
No description available.
|
36 |
ADAPTIVE MEASURES OF SIMILARITY - FUZZY HAMMING DISTANCE - AND ITS APPLICATIONS TO PATTERN RECOGNITION PROBLEMSIONESCU, MIRCEA MARIAN January 2006 (has links)
No description available.
|
37 |
Abstraction Guided Semi-formal VerificationParikh, Ankur 28 June 2007 (has links)
Abstraction-guided simulation is a promising semi-formal framework for design validation in which an abstract model of the design is used to guide a logic simulator towards a target property. However, key issues still need to be addressed before this framework can truly deliver on it's promise. Concretizing, or finding a real trace from an abstract trace, remains a hard problem. Abstract traces are often spurious, for which no corresponding real trace exits. This is a direct consequence of the abstraction being an over-approximation of the real design. Further, the way in which the abstract model is constructed is an open-ended problem which has a great impact on the performance of the simulator.
In this work, we propose a novel approaches to address these issues. First, we present a genetic algorithm to select sets of state variables directly from the gate-level net-list of the design, which are highly correlated to the target property. The sets of selected variables are used to build the Partition Navigation Tracks (PNTs). PNTs capture the behavior of expanded portions of the state space as they related to the target property. Moreover, the computation and storage costs of the PNTs is small, making them scale well to large designs.
Our experiments show that we are able to reach many more hard-to-reach states using our proposed techniques, compared to state-of-the-art methods.
Next, we propose a novel abstraction strengthening technique, where the abstract design is constrained to make it more closely resemble the concrete design. Abstraction strengthening greatly reduces the need to refine the abstract model for hard to reach properties. To achieve this, we efficiently identify sequentially unreachable partial sates in the concrete design via intelligent partitioning, resolution and cube enlargement. Then, these partial states are added as constraints in the abstract model. Our experiments show that the cost to compute these constraints is low and the abstract traces obtained from the strengthened abstract model are far easier to concretize. / Master of Science
|
38 |
Généralisations du Théorème d'Extension de MacWilliams / Generalizations of the MacWilliams Extension TheoremDyshko, Serhii 15 December 2016 (has links)
Le fameux Théorème d’Extension de MacWilliams affirme que, pour les codes classiques, toute isométrie deHamming linéaire d'un code linéaire se prolonge en une application monomiale. Cependant, pour les codeslinéaires sur les alphabets de module, l'existence d'un analogue du théorème d'extension n'est pas garantie.Autrement dit, il existe des codes linéaires sur certains alphabets de module dont les isométries de Hammingne sont pas toujours extensibles. Il en est de même pour un contexte plus général d'un alphabet de module munid'une fonction de poids arbitraire. Dans la présente thèse, nous prouvons des analogues du théorèmed'extension pour des codes construits sur des alphabets et fonctions de poids arbitraires. La propriétéd'extension est analysée notamment pour les codes de petite longueur sur un alphabet de module de matrices,les codes MDS généraux, ou encore les codes sur un alphabet de module muni de la composition de poidssymétrisée. Indépendamment de ce sujet, une classification des deux groupes des isométries des codescombinatoires est donnée. Les techniques développées dans la thèse sont prolongées aux cas des codesstabilisateurs quantiques et aux codes de Gabidulin dans le cadre de la métrique rang. / The famous MacWilliams Extension Theorem states that for classical codes each linear Hamming isometry ofa linear code extends to a monomial map. However, for linear codes over module alphabets an analogue of theextension theorem does not always exist. That is, there may exists a linear code over a module alphabet with anunextendable Hamming isometry. The same holds in a more general context of a module alphabet equippedwith a general weight function. Analogues of the extension theorem for different classes of codes, alphabetsand weights are proven in the present thesis. For instance, extension properties of the following codes arestudied: short codes over a matrix module alphabet, maximum distance separable codes, codes over a modulealphabet equipped with the symmetrized weight composition. As a separate result, a classification of twoisometry groups of combinatorial codes is given. The thesis also contains applications of the developedtechniques to quantum stabilizer codes and Gabidulin codes.
|
39 |
O segundo peso de Hamming do código de Reed-Muller generalizado / The second hamming weight of generalized Reed-Muller CodeÁvila, Dane Marques de 29 February 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we present the determination of the second Hamming weight of generalized Reed-
Muller codes in most cases (see Teorema 4.6). Our main reference is [13], although we have
also used results from [3] and [5]. In the first chapter we describe finite fields e we show how
they can be constructed. In chapter 2 we present the basics of coding theory. We define what
are error correcting codes, the Hamming metric, the parameters of a code, the equivalence of
codes through the concept of isometry, and we briefly present generalized Reed-Muller codes
and their parameters. In chapter 3 we present some results from Grobner bases theory and
the definition of Affine Cartesian codes, which generalize the generalized Reed-Muller codes. we
use tools from Grobner bases theory to determine the dimension and the minimum distance of
Affine Cartesian codes. We finish our work in chapter 4, with the determination of the second
Hamming weight for generalized Reed-Muller codes in most cases. / Nesse trabalho apresentamos o cálculo do segundo peso de Hamming de códigos de Reed-Muller
generalizados na maioria dos casos (v. Teorema 4.6). Nossa referência principal sera [13],
embora tenhamos utilizado também resultados de [3] e [5]. No primeiro capítulo descrevemos
os corpos finitos e mostramos como podem ser construídos. No capítulo 2 apresentamos os
conceitos básicos da teoria de códigos. Nele, definimos o que são os códigos corretores de erros,
a métrica de Hamming, os parâmetros de um código, a equivalência de códigos através da noção
de isometria, bem como uma breve apresentação dos códigos de Reed-Muller generalizados e
seus parâmetros. No capítulo 3 sao apresentados alguns resultados da teoria de Bases de
Grobner e a definição dos Códigos Cartesianos Afins, que são uma generalização dos códigos de
Reed-Muller generalizados. Usamos ferramentas da teoria de bases de Grobner para determinar
a dimensão e distância mínima de Códigos Cartesianos Afins. Para finalizar nosso trabalho, no
capítulo 4 determinamos o segundo peso de Hamming do Código de Reed-Muller generalizado
na maioria dos casos. / Mestre em Matemática
|
40 |
Codes et tableaux de permutations, construction, énumération et automorphismes / Permutation codes and permutations arrays: construction, enumeration and automorphismsBogaerts, Mathieu 22 June 2009 (has links)
<p>Un code de permutations G(n,d) un sous-ensemble C de Sym(n) tel que la distance de Hamming D entre deux éléments de C est supérieure ou égale à d. Dans cette thèse, le groupe des isométries de (Sym(n),D) est déterminé et il est prouvé que ces isométries sont des automorphismes du schéma d'association induit sur Sym(n) par ses classes de conjugaison. Ceci mène, par programmation linéaire, à de nouveaux majorants de la taille maximale des G(n,d) pour n et d fixés et n compris entre 11 et 13. Des algorithmes de génération avec rejet d'objets isomorphes sont développés. Pour classer les G(n,d) non isométriques, des invariants ont été construits et leur efficacité étudiée. Tous les G(4,3) et les G(5,4) ont été engendrés à une isométrie près, il y en a respectivement 61 et 9445 (dont 139 sont maximaux et décrits explicitement). D’autres classes de G(n,d) sont étudiées.<p><p><p><p> <p><p><p><p>A permutation code G(n,d) is a subset C of Sym(n) such that the Hamming distance D between two elements of C is larger than or equal to d. In this thesis, we characterize the isometry group of the metric space (Sym(n),D) and we prove that these isometries are automorphisms of the association scheme induced on Sym(n) by the conjugacy classes. This leads, by linear programming, to new upper bounds for the maximal size of G(n,d) codes for n and d fixed and n between 11 and 13. We develop generating algorithms with rejection of isomorphic objects. In order to classify the G(n,d) codes up to isometry, we construct invariants and study their efficiency. We generate all G(4,3) and G(4,5)codes up to isometry; there are respectively 61 and 9445 of them. Precisely 139 out of the latter codes are maximal and explicitly described. We also study other classes of G(n,d)codes.<p><p><p><p> / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
|
Page generated in 0.078 seconds