• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 218
  • 48
  • 30
  • 28
  • 12
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 434
  • 85
  • 85
  • 79
  • 67
  • 66
  • 63
  • 61
  • 59
  • 54
  • 53
  • 51
  • 49
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Contented Architecture - In Search of Delight for All Senses

Angjeli, Anila 12 January 2004 (has links)
Contented Architecture : In search of delight for all senses is an attempt to discover and capture the delightful sensory experiences of the users in the architectural space. Architectural space is seen as an artistic space, that appeals to different senses. The project is a Bike Hotel in Old Town, Alexandria. The situation and orientation of the building on site, the program and the features altogether make it possible for bikers to experience the space through different senses. This assembly among other pleasant experiences offers those sensory experiences that counteract the bikers daily exhaustive activities. Their bodies and minds feel relaxed, revitalized and encouraged to achieve their next goals. / Master of Architecture
112

Modelling a Haptic Categorization Task using Bayesian Inference

Arthur, Grace January 2024 (has links)
We rely heavily on our sense of touch to complete a myriad of tasks each day, yet past research focuses heavily on the visual and auditory systems, rarely concentrating on the tactile system. In the current study, we investigate human performance on a haptic categorization task and ask: what strategy do humans use to sense, interpret, and categorize objects using their sense of touch? During the experiment, participants complete 810 trials on which they receive a 3D printed object and categorize it as belonging to Category A or B. We sample the objects from a set of 25 objects, each of which differs in number of sides and dot spacing on one face. We define Categories A and B using overlapping Gaussian distributions, where Category A objects generally have fewer sides and smaller dot spacing, while Category B objects generally have more sides and larger dot spacing. Participants begin with no knowledge of the categories and learn them using feedback provided on each trial. We compared human performance to a Feature-Focused Bayesian Observer that weights the sides and dots feature information based on their reliability. It combines information from one or both features to inform a final percept and categorize each object. Our results support the hypothesis that humans employ a feature-focused categorization strategy on this task, during which they learn the categories and consider one or both of an object’s features based on their reliability. As participants complete more trials, they appear to maintain or switch to more optimal categorization strategies. Video analysis of hand movements during the experiment strongly supports these findings. / Thesis / Master of Science (MSc) / We use our senses every day to accomplish numerous categorization tasks: categorizing footsteps as originating from an ‘intruder’ or a ‘family member’, a distant animal as a ‘coyote’ or a ‘dog’, a writing utensil as a ‘pen’ or a ‘pencil’, and so on. Despite performing countless categorization tasks each day, we often overlook their complexity. Our research investigates the processing behind these tasks, specifically those tasks completed using the sense of touch. We conclude that people combine the most reliable information from their environments to determine the identity of an unknown object or stimulus. Moving forward, we can apply this deepened understanding of tactile processing to advance research in special populations and robotic applications.
113

Drivers' Ability to Localize Auditory and Haptic Alarms in Terms of Speed and Accuracy

Fitch, Gregory M. 06 December 2005 (has links)
This study investigated automobile drivers' ability to localize auditory and haptic (touch) alarms in terms of speed and accuracy. Thirty-two subjects, balanced across age (20-30 years old and 60-70 years old) and gender, participated in the study. Subjects were screened for minimum hearing of 40 dB for 500 Hz through 4000 Hz auditory tones, and maximum bilateral hearing differences of 10 dB. The experiment consisted of subjects identifying the target location of an alarm while driving a 2001 Buick LeSabre at 55 mph in light traffic. Four alarm modes were tested: 1) an auditory broadband alarm, 2) a haptic seat, 3) a combination of the haptic and the auditory alarm modes, and 4) a combination of the haptic alarm mode with a non-directional auditory alarm played from the front speakers of the vehicle. The alarms were evoked from eight target locations: the front-left, front, front-right, right, back-right, back, back-left, and left. The target locations of the auditory alarm mode existed around the interior of the car cabin using the vehicle's stock sound system speakers. The haptic alarm target locations existed in the bottom of the driver seat using an eight-by-eight grid of actuators. The experimenter evoked the alarms while subjects drove along a two-lane highway, and the alarms were not associated with any actual collision threat. Subjects were instructed to quickly identify the location of the alarm by calling them out, while being as correct as possible. Their choice response time and target location selection was recorded. The alarms were presented approximately every minute during fifteen-minute intervals over the duration of two and a half hours. Subjects completed questionnaires regarding their preference to the alarm modes. Under the conditions investigated, subjects localized the haptic alarm mode faster and more accurately than the auditory alarm mode. Subjects performed equally well with the haptic alarm mode and the two auditory and haptic combination alarm modes in terms of speed and accuracy in identifying their location. Subjects did express a preference for the addition of the auditory component to the haptic alarm mode, perhaps owing to a heightened sense of urgency. However, subjects preferred the haptic alarm mode on its own in response to hypothetical false alarm questions, perhaps because it was less annoying. Alarm mode discriminability was believed to affect localization accuracy and response time owing to its effect on the likelihood of correctly identifying a target location and the attention resources required to differentiate adjacent target locations. / Master of Science
114

New haptic syringe device for virtual angiography training

Huang, D., Tang, P., Wang, X., Wan, Tao Ruan, Tang, W. 01 April 2019 (has links)
No / Angiography is an important minimally invasive diagnostic procedure in endovascular interventions. Effective training for the procedure is expensive, time consuming and resource demanding. Realistic simulation has become a viable solution to addressing such challenges. However, much of previous work has been focused on software issues. In this paper, we present a novel hardware system-an interactive syringe device with haptics as an add-on hardware component to 3D VR angiography training simulator. Connected to a realistic 3D computer simulation environment, the hardware component provides injection haptic feedback effects for medical training. First, we present the design of corresponding novel electronic units consisting of many design modules. Second, we describe a curve fitting method to estimate injection dosage and injection speed of the contrast media based on voltage variation between the potentiometer to increase the realism of the simulated training. A stepper motor control method is developed to imitate the coronary pressure for force feedback of syringe. Experimental results show that the validity and feasibility of the new haptic syringe device for achieving good diffusion effects of contrast media in the simulation system. A user study experiment with medical doctors to assess the efficacy and realism of proposed simulator shows good outcomes. / National Natural Science Foundation of China (61402278), the Innovation Program of the Science and Technology Commission of Shanghai Municipality of China (16511101302), Research Program of Shanghai Engineering Research Center of Motion Picture Special Effects (16dz2251300)
115

The Development of a Locomotion Interface for Virtual Reality Terrain Simulation

He, An Chi 09 January 2025 (has links)
Virtual reality (VR) technology has amazed us with its capability of blurring the boundary between real and virtual; it tricks our minds into believing that what we experience is real. This technology is used for entertainment and various applications such as rehabilitation, immersive training, 3D design, etc. However, navigating the VR world remains a significant issue that has yet to be solved. In VR, we often rely on controllers or joysticks to traverse the virtual world. VR navigation with joysticks creates a discrepancy between the visual and bodily senses, which creates extra cognitive load and other problems, such as VR motion sickness, which limit the long-term use of VR applications and prevent it from being widely adopted. Walking is the most common task that we perform every day; it is the most intuitive way of navigation and is desirable to be implemented in VR. This dissertation details the development of a device that enables walking in VR and allows users to experience different terrains. Researchers and companies have pulled off endeavors to enable locomotion in VR; some even achieved commercial success, like the Omni One or KAT VR treadmill. Still, most devices are limited in simulating flat-ground walking without the capability of displaying any terrain, which is far from our living environments and restricts its usage. Our living surroundings feature stairs, bumps, and slopes that those devices can not render. Furthermore, VR can be desirable in hazardous reaction training, which is often situated in highly unstructured environments. Being able to simulate various terrains not only enhances VR immersion but also extends its usage for simulating multiple scenarios that could require extensive cost to construct. This document presents the design, build, control, and evaluation of a robotic locomotion interface that aims to display computer-generated terrains, allowing realistic lower-body engagement. The device features a novel, compact design that allows it to be available in space-constrained places like rehabilitation clinics or smaller labs. It uses design guidelines derived from motion capture data with dynamic simulation to align the robot and human workspace. After that, the system framework is addressed from both hardware and software aspects. This device features open-source Institute for Human and Machine Cognition (IHMC) software integrated with the Simple Open Source EtherCAT Master (SOEM) library to execute real-time EtherCAT communication. An admittance controller has been implemented to achieve smooth physical human-robot interaction (pHRI), governing the robot motion according to user input force. This work presents measurements to evaluate the system's performance. The document presents a CoM (center-of-mass) estimation algorithm that is based on LIP (linear inverted pendulum) model and ZMP (zero-moment point). And the estimation method is further validated through two applications: an initial framework of tele-locomotion and VR interaction. In the first case, it uses estimated CoM motion as a tracking reference for humanoid robots. The second application presents a framework that is able to display virtual terrain in the physical world. / Doctor of Philosophy / Virtual reality (VR) technology has shown impressive capability in convincing our minds that what we experience is real, blurring the boundary between real and virtual. This cutting-edge technology is now a cornerstone of entertainment, rehabilitation, immersive training, and product design applications. However, one major challenge remains unsolved: how we move through VR environments. Currently, most VR systems rely on controllers or joysticks for navigation. Unfortunately, this creates a disconnect between what we see and how our bodies move, leading to problems like cognitive overload and motion sickness. These issues limit how long we can use VR and its broader application. This researcher meant to explore a way to make walking a natural part of the VR experience. Walking is something we do effortlessly every day, and it is the most intuitive way to move around. Bringing this natural form of navigation into VR has the potential to significantly enhance the experience. While some devices, like the Omni One or KAT VR treadmill, have gained attention for enabling locomotion in VR, they mostly simulate flat surfaces. This falls short of replicating real-world environments, which often include stairs, slopes, and uneven terrain. Such limitations restrict VR's potential, especially for applications like emergency response training, where navigating complex environments is critical. Simulating realistic terrains could not only make VR more immersive but also open doors to training scenarios that would otherwise be expensive or unsafe to recreate. In this work, we introduce a novel robotic device that allows users to physically walk in VR and experience a variety of terrains. Compactly designed, this device is suitable for space-constrained settings like rehabilitation clinics and small research labs. It incorporates advanced motion-capture data and dynamic simulations to align human movement with the robot's workspace seamlessly. The system uses open-source IHMC software combined with a real-time EtherCAT communication framework for precise control. An admittance controller ensures smooth and responsive interaction between the user and the device. To assess its effectiveness, we developed a comprehensive evaluation framework, measuring how well the system performs and enhances the VR experience. This innovative design allows users to physically interact with computer-generated terrains, extending the possibilities of VR for research, training, and beyond. Ultimately, this work contributes to advancing VR technology, bringing us closer to making immersive, terrain-rich virtual worlds a reality.
116

Exploring the Impact of a Visuo-Haptic Simulation for the Conceptual Understanding of Pulleys

Shreya Digambar Randive (6818642) 02 August 2019 (has links)
<p>Recently, exploration to develop creative and technology-centered learning techniques have become popular. Researchers work on non-traditional tools to help students understand abstract concepts and reduce misconceptions in physics education. Studies have been performed to explore the influence computer simulations can make on learning as compared to the traditional methods. Simulations with dynamic moving images which engage visual senses have helped improve learning, while haptic channels are unexplored in comparison tactile senses are crucial in the case of embodied cognitive learning.</p><p><br></p><p>This thesis takes an opportunity to explore the research area of haptic technology combined with visual simulation. It tests the efficiency of the learning environment developed as a part of this thesis called the Visuo-Haptic Pulley Simulation (ViHaPS) in learning concepts of when compared to traditional learning tools. ViHaPS consists of six different scenarios and is designed to address common misconceptions of pulleys and has two different modes - minimal visual cues and added visual cues. Undergraduate students enrolled at Purdue University participated in this research. They were formed into two groups - an experimental group (ViHaPS) and control group (physical manipulatives) and were compared for learning gains.</p><p> </p><p><br></p><p>Results indicate that ViHaPS is useful in learning concepts of pulleys; however, the results are not significant in comparison to the real experimentation with pulleys.</p>
117

Haptic interfaces and their application on computer mediated tactile communication / Interfaces hápticas e sua aplicação em comunicação tátil mediada por computador

Oliveira, Victor Adriel de Jesus January 2018 (has links)
Além de um canal para adquirir informações sobre o ambiente ao nosso redor, o sentido do tato é também o nosso sentido mais social. No entanto, a interação háptica é geralmente implementada como chamariz nas interfaces modernas. Embora a comunicação multimodal seja comum em Ambientes Virtuais, as tecnologias de Realidade Virtual mais acessíveis nem sequer incluem o componente háptico como parte fundamental. Esta tese apresenta estudos sobre percepção, desempenho do usuário, e experiência do usuário com dispositivos de comunicação vibrotátil construídos para suportar diferentes tarefas interativas em ambientes virtuais e físicos. Foram avaliados diferentes atuadores hápticos, configurações de exibição tátil, locais do corpo, perfis de usuário, e métodos para se projetar uma plataforma tátil robusta. Tal plataforma foi finalmente construída como uma tela vibrotátil para ser usada ao redor da cabeça e para suportar tarefas de consciência espacial e comunicação em ambientes virtuais e físicos. Durante a pesquisa foi observado que, apesar de sua importância para a comunicação, o uso proativo de háptica para intercomunicação é surpreendentemente negligenciado. Portanto, foi dada especial atenção aos elementos presentes na articulação da fala para introduzir a articulação háptica proativa como uma nova abordagem para intercomunicação. Foi proposto que a habilidade de usar uma interface háptica como uma ferramenta para comunicação implícita pode suplementar a comunicação e suportar tarefas colaborativas próximas e remotas em diferentes contextos. Além disso, uma interface articulatória pode fornecer um modo direto e expressivo de se comunicar através de sinais táteis. Para demonstrar isso, os resultados dessa pesquisa foram aplicados ao projeto de uma tela montada na cabeça com vibração, especialmente feita para interação com ambientes virtuais imersivos. Tal aparato mostrou-se útil não apenas para orientação no espaço 3D, mas também para intercomunicação em ambientes virtuais colaborativos. Além de nossas contribuições técnicas em relação à construção de uma tela tátil totalmente testada para múltiplas tarefas e contextos, nossa principal contribuição é a concepção e demonstração de um novo paradigma de interação tátil. Tal paradigma se concentra em fornecer maneiras simples e diretas para que indivíduos se expressem através de sinais táteis em aplicações mediadas por computador para interair com seu ambiente e com outros indivíduos. Esse paradigma envolve os usuários finais e permite que eles se tornem interlocutores ao invés de meros receptores do feedback tátil. / The sense of touch not only is a channel for acquiring information about the environment around us, it is also our most social sense. However, haptic interaction is usually implemented as a gimmick feature in modern interfaces. Although multimodal communication is commonplace in Virtual Environments, the most accessible Virtual Reality technologies do not even include the haptic component as a fundamental part. This thesis presents studies on perception, user performance, and user experience with vibrotactile communication devices built to support different interactive tasks in virtual and physical environments. We have assessed different haptic actuators, tactile display configurations, body sites, user profiles and methods to design a robust tactile platform. Such platform was finally built as a vibrotactile display to be worn around the head and to support spatial awareness and communication in both virtual and physical environments. During our research, we particularly notice that the proactive use of touch for intercommunication is surprisingly neglected regardless of its importance for communication. Therefore, we have also directed our attention to elements present in speech articulation to introduce proactive haptic articulation as a novel approach for intercommunication. We propose that the ability to use a haptic interface as a tool for implicit communication can supplement communication and support near and remote collaborative tasks in different contexts. In addition, an articulatory interface can provide a direct and expressive way for communicating through tactile cues. To demonstrate that, our results were applied to the design of a vibrotactile head-mounted display especially made for interaction with immersive virtual environments. Such apparatus was shown not only to support guidance in 3D space but also to support intercommunication in collaborative virtual environments. In addition to our technical contributions regarding the construction of a fully tested tactile display for multiple tasks and contexts, our main contribution is the conception and demonstration of a new paradigm for tactile interaction. Such paradigm focuses on providing simple and direct ways for individuals to express themselves through tactile cues in computer-mediated interaction with their environment and with others. Such paradigm embraces the final users and allows them to become interlocutors rather than just receivers of the haptic feedback.
118

Human haptic perception is interrupted by explorative stops of milliseconds

Grunwald, Martin, Muniyandi, Manivannan, Kim, Hyun, Kim, Jung, Krause, Frank, Müller, Stephanie, Srinivasan, Mandayam A. 27 May 2014 (has links) (PDF)
The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well.The goal of the present study was to detect these \"explorative stops\"(ES) during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed:(a) between mean exploration time and duration of ES, (b) between certain stimulus features and ES frequency, and (c) the duration of ES during the course of exploration.
119

Haptic Device Design

Baser, Ozgur 01 January 2006 (has links) (PDF)
ABSTRACT Haptic devices are used to provide multi-modal data transfer between haptic users and computers in virtual reality applications. They enable humans to take force and tactile feedback from any virtual or remote objects. Haptic devices also facilitate the use of data collected from a real object in the virtual environment. Usage of the haptic devices increase more and more in industrial, educational and medical applications in parallel with development of virtual reality technology. As virtual reality technology requires interdisciplinary study with related to its application areas, it creates a lot of different specific working areas (Haptic interface design, freeform model, surgical operations in virtual environment etc.). Especially, some complex modifications which require hand-working can be performed with the system having great potential in medical applications (Brain surgery without error and operations which require great skill etc.). This is only one of the implementations of haptic devices in digital environment. Aim of this study is to design and manufacture a 7 DOF (degrees of freedom) haptic device which serves the mentioned application areas. All different haptic devices in literature have maximum 6 DOF. The designed 7 DOF haptic device has about 20% extra working space and more flexible working capability compared to the other haptic devices with the similar link lengths and joint limitations. This study is important in terms of the development of haptic devices in the world as well as spreading of haptic devices and its applications in Turkey.
120

Haptic interfaces and their application on computer mediated tactile communication / Interfaces hápticas e sua aplicação em comunicação tátil mediada por computador

Oliveira, Victor Adriel de Jesus January 2018 (has links)
Além de um canal para adquirir informações sobre o ambiente ao nosso redor, o sentido do tato é também o nosso sentido mais social. No entanto, a interação háptica é geralmente implementada como chamariz nas interfaces modernas. Embora a comunicação multimodal seja comum em Ambientes Virtuais, as tecnologias de Realidade Virtual mais acessíveis nem sequer incluem o componente háptico como parte fundamental. Esta tese apresenta estudos sobre percepção, desempenho do usuário, e experiência do usuário com dispositivos de comunicação vibrotátil construídos para suportar diferentes tarefas interativas em ambientes virtuais e físicos. Foram avaliados diferentes atuadores hápticos, configurações de exibição tátil, locais do corpo, perfis de usuário, e métodos para se projetar uma plataforma tátil robusta. Tal plataforma foi finalmente construída como uma tela vibrotátil para ser usada ao redor da cabeça e para suportar tarefas de consciência espacial e comunicação em ambientes virtuais e físicos. Durante a pesquisa foi observado que, apesar de sua importância para a comunicação, o uso proativo de háptica para intercomunicação é surpreendentemente negligenciado. Portanto, foi dada especial atenção aos elementos presentes na articulação da fala para introduzir a articulação háptica proativa como uma nova abordagem para intercomunicação. Foi proposto que a habilidade de usar uma interface háptica como uma ferramenta para comunicação implícita pode suplementar a comunicação e suportar tarefas colaborativas próximas e remotas em diferentes contextos. Além disso, uma interface articulatória pode fornecer um modo direto e expressivo de se comunicar através de sinais táteis. Para demonstrar isso, os resultados dessa pesquisa foram aplicados ao projeto de uma tela montada na cabeça com vibração, especialmente feita para interação com ambientes virtuais imersivos. Tal aparato mostrou-se útil não apenas para orientação no espaço 3D, mas também para intercomunicação em ambientes virtuais colaborativos. Além de nossas contribuições técnicas em relação à construção de uma tela tátil totalmente testada para múltiplas tarefas e contextos, nossa principal contribuição é a concepção e demonstração de um novo paradigma de interação tátil. Tal paradigma se concentra em fornecer maneiras simples e diretas para que indivíduos se expressem através de sinais táteis em aplicações mediadas por computador para interair com seu ambiente e com outros indivíduos. Esse paradigma envolve os usuários finais e permite que eles se tornem interlocutores ao invés de meros receptores do feedback tátil. / The sense of touch not only is a channel for acquiring information about the environment around us, it is also our most social sense. However, haptic interaction is usually implemented as a gimmick feature in modern interfaces. Although multimodal communication is commonplace in Virtual Environments, the most accessible Virtual Reality technologies do not even include the haptic component as a fundamental part. This thesis presents studies on perception, user performance, and user experience with vibrotactile communication devices built to support different interactive tasks in virtual and physical environments. We have assessed different haptic actuators, tactile display configurations, body sites, user profiles and methods to design a robust tactile platform. Such platform was finally built as a vibrotactile display to be worn around the head and to support spatial awareness and communication in both virtual and physical environments. During our research, we particularly notice that the proactive use of touch for intercommunication is surprisingly neglected regardless of its importance for communication. Therefore, we have also directed our attention to elements present in speech articulation to introduce proactive haptic articulation as a novel approach for intercommunication. We propose that the ability to use a haptic interface as a tool for implicit communication can supplement communication and support near and remote collaborative tasks in different contexts. In addition, an articulatory interface can provide a direct and expressive way for communicating through tactile cues. To demonstrate that, our results were applied to the design of a vibrotactile head-mounted display especially made for interaction with immersive virtual environments. Such apparatus was shown not only to support guidance in 3D space but also to support intercommunication in collaborative virtual environments. In addition to our technical contributions regarding the construction of a fully tested tactile display for multiple tasks and contexts, our main contribution is the conception and demonstration of a new paradigm for tactile interaction. Such paradigm focuses on providing simple and direct ways for individuals to express themselves through tactile cues in computer-mediated interaction with their environment and with others. Such paradigm embraces the final users and allows them to become interlocutors rather than just receivers of the haptic feedback.

Page generated in 0.0371 seconds