• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 10
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 22
  • 19
  • 18
  • 16
  • 14
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Propriétés métriques des ensembles de niveau des applications différentiables sur les groupes de Carnot / Metric properties of level sets of differentiable maps on Carnot groups

Kozhevnikov, Artem 29 May 2015 (has links)
Nous étudions les propriétés métriques locales des ensembles de niveau des applicationshorizontalement différentiables entre des groupes de Carnot, c'est-à-dire différentiable par rapport à la structure sous-riemannienne intrinsèque.Nous considérons des applications dont la différentielle horizontale est surjective,et notre étude peut être vue comme une généralisation du théorème des fonctions implicites pour les groupes de Carnot.Tout d'abord, nous présentons deux notions de tangence dans les groupes de Carnot:la première basée sur la condition de platitude au sens de Reifenberg et la deuxième issue de l'analyse convexe classique.Nous montrons que dans les deux cas, l'espace tangent à un ensemble de niveau coïncide avec le noyau de la différentielle horizontale.Nous montrons que cette condition de tangence caractérise en fait les ensembles de niveaudits ‘co-abéliens', c'est-à-dire ceux pour lesquels l'espace d'arrivée est abélien, et qu'une telle caractérisation n'est pas vraie en général.Ce résultat sur les espaces tangents a plusieurs conséquences remarquables.La plus importante est que la dimension de Hausdorff des ensembles de niveau est celle à laquelle l'on s'attend.Nous montrons également la connectivité locale des ensembles de niveau, et le fait que les ensembles de niveau de dimension 1 sont topologiquement des arcs simples.Pour les ensembles de niveau de dimension 1 nous trouvons une formule de l'aire qui permet d'exprimer la mesure de Hausdorff en termes d'intégrales de Stieltjes généralisées.Ensuite, nous menons une étude approfondie du cas particulier des ensembles de niveau dans les groupes d'Heisenberg.Nous montrons que les ensembles de niveau sont topologiquement équivalents à leurs espaces tangents.Il s'avère que la mesure de Hausdorff des ensembles de niveau de codimension élevée est souvent irrégulière, étant, par exemple, localement nulle ou infinie.Nous présentons une condition simple de régularité supplémentaire pour une application pour assurer la régularité au sens d'Ahlfors des ses ensembles de niveau.Parmi d'autres résultats, nous obtenons une nouvelle caractérisation généraledes graphes Lipschitziens associés à une décomposition en produit semi-direct d'un groupe de Carnot.Nous traitons, en particulier, le cas des groupes de Carnot dont le nombre de stratesest plus grand que $2$.Cette caractérisation nous permet de déduire une nouvelle caractérisation des ensemblesde niveau co-abéliens qui admettent une représentation en tant que graphe. / Metric properties of level sets of differentiable maps on Carnot groupsAbstract.We investigate the local metric properties of level sets of mappings defined between Carnot groups that are horizontally differentiable, i.e.with respect to the intrinsic sub-Riemannian structure. We focus on level sets of mapping having a surjective differential,thus, our study can be seen as an extension of implicit function theorem for Carnot groups.First, we present two notions of tangency in Carnot groups: one based on Reifenberg's flatness condition and another coming from classical convex analysis.We show that for both notions, the tangents to level sets coincide with the kernels of horizontal differentials.Furthermore, we show that this kind of tangency characterizes the level sets called ``co-abelian'', i.e.for which the target space is abelian andthat such a characterization may fail in general.This tangency result has several remarkable consequences.The most important one is that the Hausdorff dimension of the level sets is the expected one. We also show the local connectivity of level sets and, the fact that level sets of dimension one are topologically simple arcs.Again for dimension one level set, we find an area formula that enables us to compute the Hausdorff measurein terms of generalized Stieltjes integrals.Next, we study deeply a particular case of level sets in Heisenberg groups. We show that the level sets in this case are topologically equivalent to their tangents.It turns out that the Hausdorff measure of high-codimensional level sets behaves wildly, for instance, it may be zero or infinite.We provide a simple sufficient extra regularity condition on mappings that insures Ahlfors regularity of level sets.Among other results, we obtain a new general characterization of Lipschitz graphs associated witha semi-direct splitting of a Carnot group of arbitrary step.We use this characterization to derive a new characterization of co-ablian level sets that can be represented as graphs.
62

Numerické metody měření fraktálních dimenzí a fraktálních měr / Numerical methods of measurement of fractal dimensions and fractal measures

Le, Huy January 2020 (has links)
Tato diplomová práce se zabývá teorií fraktálů a popisuje patričné potíže při zavedení pojmu fraktál. Dále se v práci navrhuje několik metod, které se použijí na aproximaci fraktálních dimenzí různých množin zobrazených na zařízeních s konečným rozlišením. Tyto metody se otestují na takových množinách, jejichž dimenze známe, a na závěr se výsledky porovnávají.
63

Fraktály v počítačové grafice / Fractals in Computer Graphics

Heiník, Jan Unknown Date (has links)
This Master's thesis deals with history of Fractal geometry and describes the fractal science development. In the begining there are essential Fractal science terms explained. Then description of fractal types and typical or most known examples of them are mentioned. Fractal knowledge application besides computer graphics area is discussed. Thesis informs about fractal geometry practical usage. Few present software packages or more programs which can be used for making fractal pictures are described in this work. Some of theirs capabilities are described. Thesis' practical part consists of slides, demonstrational program and poster. Electronical slides represents brief scheme usable for fractal geometry realm lectures. Program generates selected fractal types. Thesis results are projected on poster.
64

Fractal Sets: Dynamical, Dimensional and Topological Properties / Fraktalmängder: Dynamiska, Dimensionella och Topologiska Egenskaper

Wang, Nancy January 2018 (has links)
Fractals is a relatively new mathematical topic which received thorough treatment only starting with 1960's. Fractals can be observed everywhere in nature and in day-to-day life. To give a few examples, common fractals are the spiral cactus, the romanesco broccoli, human brain and the outline of the Swedish map. Fractal dimension is a dimension which need not take integer values. In fractal geometry, a fractal dimension is a ratio providing an index of the complexity of fractal pattern with regard to how the local geometry changes with the scale at which it is measured. In recent years, fractal analysis is used increasingly in many areas of engineering and technology. Among others, fractal analysis is used in signal and image compression, computer and video design, neuroscience and fractal based cancer modelling and diagnosing.   This study consists of two main parts. The first part of the study aims to understand the appearance of an irregular Cantor set generated by the chaotic dynamical system generated by the logistic function on the unit interval [0,1]. In order to understand this irregular Cantor set, we studied the topological properties of the Cantor Middle-thirds set and the generalised Cantor sets, all of which have zero length. The necessity to compare these sets with regard to their size led us to the second part of this paper, namely the dimension studies of fractals. More complex fractals were presented in the second part, three definitions of dimension were introduced. The fractal dimension of the irregular Cantor set generated by the logistic mapping was estimated and we found that the Hausdorff dimension has the widest scope and greatest flexibility in the fractal studies. / Fraktaler är ett relativt nytt ämne inom matematik som fick sitt stora genomslag först efter 60-talet.  En fraktal är ett självliknande mönster med struktur i alla skalor. Några vardagliga exempel på fraktaler är spiralkaktus, romanescobroccoli, mänskliga hjärnan, blodkärlen och Sveriges fastlandskust. Bråktalsdimension är en typ av dimension där dimensionsindexet tillåts att anta alla icke-negativa reella tal. Inom fraktalgeometri kan dimensionsindexet betraktas som ett komplexitetsindex av mönstret med avseende på hur den lokala geometrin förändras beroende på vilken skala mönstret betraktas i. Under det senaste decenniet har fraktalanalysen använts alltmer flitigt inom tekniska och vetenskapliga tillämpningar. Bland annat har fraktalanalysen använts i signal- och bildkompression, dator- och videoformgivning, neurovetenskap och fraktalbaserad cancerdiagnos.   Denna studie består av två huvuddelar. Den första delen fokuserar på att förstår hur en fraktal kan uppstå i ett kaotiskt dynamiskt system. För att vara mer specifik studerades den logistiska funktionen och hur denna ickelinjära avbildning genererar en oregelbunden Cantormängd på intervalet [0,1]. Vidare, för att förstå den oregelbundna Cantormängden studerades Cantormängden (eng. the Cantor Middle-Thirds set) och de generaliserade Cantormängderna, vilka alla har noll längd. För att kunna jämföra de olika Cantormängderna med avseende på storlek, leds denna studie vidare till dimensionsanalys av fraktaler som är huvudämnet i den andra delen av denna studie. Olika topologiska fraktaler presenterades, tre olika definitioner av dimension introducerades, bland annat lådräkningsdimensionen och Hausdorffdimensionen. Slutligen approximerades dimensionen av den oregelbundna Cantormängden med hjälp av Hausdorffdimensionen. Denna studie demonstrerar att Hausdorffdimensionen har större omfattning och mer flexibilitet för fraktalstudier.

Page generated in 0.0707 seconds