41 |
Dimension theory and fractal constructions based on self-affine carpetsFraser, Jonathan M. January 2013 (has links)
The aim of this thesis is to develop the dimension theory of self-affine carpets in several directions. Self-affine carpets are an important class of planar self-affine sets which have received a great deal of attention in the literature on fractal geometry over the last 30 years. These constructions are important for several reasons. In particular, they provide a bridge between the relatively well-understood world of self-similar sets and the far from understood world of general self-affine sets. These carpets are designed in such a way as to facilitate the computation of their dimensions, and they display many interesting and surprising features which the simpler self-similar constructions do not have. For example, they can have distinct Hausdorff and packing dimensions and the Hausdorff and packing measures are typically infinite in the critical dimensions. Furthermore, they often provide exceptions to the seminal result of Falconer from 1988 which gives the `generic' dimensions of self-affine sets in a natural setting. The work in this thesis will be based on five research papers I wrote during my time as a PhD student. The first contribution of this thesis will be to introduce a new class of self-affine carpets, which we call box-like self-affine sets, and compute their box and packing dimensions via a modified singular value function. This not only generalises current results on self-affine carpets, but also helps to reconcile the `exceptional constructions' with Falconer's singular value function approach in the generic case. This will appear in Chapter 2 and is based on a paper which appeared in 'Nonlinearity' in 2012. In Chapter 3 we continue studying the dimension theory of self-affine sets by computing the Assouad and lower dimensions of certain classes. The Assouad and lower dimensions have not received much attention in the literature on fractals to date and their importance has been more related to quasi-conformal maps and embeddability problems. This appears to be changing, however, and so our results constitute a timely and important contribution to a growing body of literature on the subject. The material in this Chapter will be based on a paper which has been accepted for publication in 'Transactions of the American Mathematical Society'. In Chapters 4-6 we move away from the classical setting of iterated function systems to consider two more exotic constructions, namely, inhomogeneous attractors and random 1-variable attractors, with the aim of developing the dimension theory of self-affine carpets in these directions. In order to put our work into context, in Chapter 4 we consider inhomogeneous self-similar sets and significantly generalise the results on box dimensions obtained by Olsen and Snigireva, answering several questions posed in the literature in the process. We then move to the self-affine setting and, in Chapter 5, investigate the dimensions of inhomogeneous self-affine carpets and prove that new phenomena can occur in this setting which do not occur in the setting of self-similar sets. The material in Chapter 4 will be based on a paper which appeared in 'Studia Mathematica' in 2012, and the material in Chapter 5 is based on a paper, which is in preparation. Finally, in Chapter 6 we consider random self-affine sets. The traditional approach to random iterated function systems is probabilistic, but here we allow the randomness in the construction to be provided by the topological structure of the sample space, employing ideas from Baire category. We are able to obtain very general results in this setting, relaxing the conditions on the maps from `affine' to `bi-Lipschitz'. In order to get precise results on the Hausdorff and packing measures of typical attractors, we need to specialise to the setting of random self-similar sets and we show again that several interesting and new phenomena can occur when we relax to the setting of random self-affine carpets. The material in this Chapter will be based on a paper which has been accepted for publication by 'Ergodic Theory and Dynamical Systems'.
|
42 |
Dimensão generalizada de Hausdorff /Serantola, Leonardo Pereira January 2019 (has links)
Orientador: Márcio Ricardo Alves Gouveia / Resumo: O presente trabalho trata de conceitos relacionados com a medida generalizada de Hausdorff, onde o principal objetivo consiste na obtenção de conjuntos cuja dimensão seja um número positivo não inteiro. Ele começa com uma definição sobre as propriedades que uma função de conjunto deve satisfazer para ser considerada uma medida de Carathéodory, suas implicações e consequências. Após a explicação destes conceitos iniciais, dá-se alguns exemplos de funções de conjunto contínuas e monótonas com a apresentação da função de escala logarítmica, que é peça chave para o desenvolvimento de conjuntos de medidas positivas não inteiras, além da introdução da medida de Hausdorff com seus desdobramentos. Algumas hipóteses sobre funções côncavas são apresentadas juntamente com fórmulas deduzidas com bases nestas hipóteses e na concavidade da função. Utiliza-se a função de escala logarítima para a determinação da dimensão de vários conjuntos, inclusive o conjunto de Cantor. Posteriormente, há uma adaptação dos conceitos trabalhados para o tratamento de dimensões relacionadas à números diádicos irracionais. Por fim, os conceitos tratados sobre a reta real são estendidos para produtos cartesianos, com especial enfoque para conjuntos planares. / Abstract: The present work deals with concepts related to the generalized Hausdorff measure, where the main objective is to obtain sets whose dimension is a positive non integer number. It begins with a definition of the properties that a set function must satisfy to be considered a Carathéodory measure, their implications and consequences. Following the explanation of these initial concepts, some examples of continuous and monotonous set functions are given with the presentation of the logarithmic scale function, which is key to the development of non-integer positive measure sets, in addition to the introduction of the Hausdorff measure with its developments. Some assumptions about concave functions are presented together with formulas derived from these assumptions and the concavity of the function. The logarithmic scale function is used to determine the dimension of various sets, including the Cantor set. Later, there is an adaptation of the concepts worked for the treatment of dimensions related to irrational dyadic numbers. Finally, the concepts treated on the real line are extended to Cartesian products, with special focus on planar sets. / Mestre
|
43 |
Geometria fractalIwai, Marceli Megumi Hamazi January 2015 (has links)
Orientador: Prof. Dr. Daniel Miranda Machado / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2015.
|
44 |
Etude dimensionnelle de la régularité de processus de diffusion à sauts / Dimension properties of the regularity of jump diffusion processesYang, Xiaochuan 01 July 2016 (has links)
Dans cette thèse, on étudie diverses propriétés dimensionnelles de la régularité de processus de difusions à sauts, solution d’une classe d’équations différentielles stochastiques à sauts. En particulier, on décrit la fluctuation de la régularité höldérienne de ces processus et celle de la dimension locale pour la mesure d’occupation qui leur est associée en calculant leur spectre multifractal. La dimension de Hausdorff de l’image et du graphe de ces processus ont aussi étudiées.Dans le dernier chapitre, on applique une nouvelle notion de dimension de grande échelle pour décrire l’asymptote à l’infini du temps de séjour d’un mouvement brownien en dimension 1 sous des frontières glissantes / In this dissertation, we study various dimension properties of the regularity of jump di usion processes, solution of a class of stochastic di erential equations with jumps. In particular, we de- scribe the uctuation of the Hölder regularity of these processes and that of the local dimensions of the associated occupation measure by computing their multifractal spepctra. e Hausdor dimension of the range and the graph of these processes are also calculated.In the last chapter, we use a new notion of “large scale” dimension in order to describe the asymptotics of the sojourn set of a Brownian motion under moving boundaries
|
45 |
The Role Of Potential Theory In Complex DynamicsBandyopadhyay, Choiti 05 1900 (has links) (PDF)
Potential theory is the name given to the broad field of analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, Green’s functions, potentials and capacity. In this text, our main goal will be to gain a deeper understanding towards complex dynamics, the study of dynamical systems defined by the iteration of analytic functions, using the tools and techniques of potential theory. We will restrict ourselves to holomorphic polynomials in C.
At first, we will discuss briefly about harmonic and subharmonic functions. In course, potential theory will repay its debt to complex analysis in the form of some beautiful applications regarding the Julia sets (defined in Chapter 8) of a certain family of polynomials, or a single one.
We will be able to provide an explicit formula for computing the capacity of a Julia set, which in some sense, gives us a finer measurement of the set. In turn, this provides us with a sharp estimate for the diameter of the Julia set. Further if we pick any point w from the Julia set, then the inverse images q−n(w) span the whole Julia set. In fact, the point-mass measures with support at the discrete set consisting of roots of the polynomial, (qn-w) will eventually converge to the equilibrium measure of the Julia set, in the weak*-sense. This provides us with a very effective insight into the analytic structure of the set.
Hausdorff dimension is one of the most effective notions of fractal dimension in use. With the help of potential theory and some ergodic theory, we can show that for a certain holomorphic family of polynomials varying over a simply connected domain D, one can gain nice control over how the Hausdorff dimensions of the respective Julia sets change with the parameter λ in D.
|
46 |
HAUSDORFF DIMENSION OF DIVERGENT GEODESICS ON PRODUCT OF HYPERBOLIC SPACESYang, Lei 14 November 2014 (has links)
No description available.
|
47 |
Discrete and Profinite Groups Acting on Regular Rooted Trees / Diskrete und pro-endliche Gruppen, die auf regulären Bäumen mit einem Fixpunkt operierenSiegenthaler, Olivier 28 September 2009 (has links)
No description available.
|
48 |
Local times of Brownian motionMukeru, Safari 09 1900 (has links)
After a review of the notions of Hausdorff and Fourier dimensions from fractal geometry
and Fourier analysis and the properties of local times of Brownian motion, we study the
Fourier structure of Brownian level sets. We show that if δa(X) is the Dirac measure
of one-dimensional Brownian motion X at the level a, that is the measure defined by
the Brownian local time La at level a, and μ is its restriction to the random interval
[0, L−1
a (1)], then the Fourier transform of μ is such that, with positive probability, for all
0 ≤ β < 1/2, the function u → |u|β|μ(u)|2, (u ∈ R), is bounded. This growth rate is the
best possible. Consequently, each Brownian level set, reduced to a compact interval, is
with positive probability, a Salem set of dimension 1/2. We also show that the zero set
of X reduced to the interval [0, L−1
0 (1)] is, almost surely, a Salem set. Finally, we show
that the restriction μ of δ0(X) to the deterministic interval [0, 1] is such that its Fourier
transform satisfies E (|ˆμ(u)|2) ≤ C|u|−1/2, u 6= 0 and C > 0.
Key words: Hausdorff dimension, Fourier dimension, Salem sets, Brownian motion,
local times, level sets, Fourier transform, inverse local times. / Decision Sciences / PhD. (Operations Research)
|
49 |
Inhomogeneous self-similar sets and measuresSnigireva, Nina January 2008 (has links)
The thesis consists of four main chapters. The first chapter includes an introduction to inhomogeneous self-similar sets and measures. In particular, we show that these sets and measures are natural generalizations of the well known self-similar sets and measures. We then investigate the structure of these sets and measures. In the second chapter we study various fractal dimensions (Hausdorff, packing and box dimensions) of inhomogeneous self-similar sets and compare our results with the well-known results for (ordinary) self-similar sets. In the third chapter we investigate the L {q} spectra and the Renyi dimensions of inhomogeneous self-similar measures and prove that new multifractal phenomena, not exhibited by (ordinary) self-similar measures, appear in the inhomogeneous case. Namely, we show that inhomogeneous self-similar measures may have phase transitions which is in sharp contrast to the behaviour of the L {q} spectra of (ordinary) self-similar measures satisfying the Open Set Condition. Then we study the significantly more difficult problem of computing the multifractal spectra of inhomogeneous self-similar measures. We show that the multifractal spectra of inhomogeneous self-similar measures may be non-concave which is again in sharp contrast to the behaviour of the multifractal spectra of (ordinary) self-similar measures satisfying the Open Set Condition. Then we present a number of applications of our results. Many of them are related to the notoriously difficult problem of computing (or simply obtaining non-trivial bounds) for the multifractal spectra of self-similar measures not satisfying the Open Set Condition. More precisely, we will show that our results provide a systematic approach to obtain non-trivial bounds (and in some cases even exact values) for the multifractal spectra of several large and interesting classes of self-similar measures not satisfying the Open Set Condition. In the fourth chapter we investigate the asymptotic behaviour of the Fourier transforms of inhomogeneous self-similar measures and again we present a number of applications of our results, in particular to non-linear self-similar measures.
|
50 |
Dimension and measure theory of self-similar structures with no separation conditionFarkas, Ábel January 2015 (has links)
We introduce methods to cope with self-similar sets when we do not assume any separation condition. For a self-similar set K ⊆ ℝᵈ we establish a similarity dimension-like formula for Hausdorff dimension regardless of any separation condition. By the application of this result we deduce that the Hausdorff measure and Hausdorff content of K are equal, which implies that K is Ahlfors regular if and only if Hᵗ (K) > 0 where t = dim[sub]H K. We further show that if t = dim[sub]H K < 1 then Hᵗ (K) > 0 is also equivalent to the weak separation property. Regarding Hausdorff dimension, we give a dimension approximation method that provides a tool to generalise results on non-overlapping self-similar sets to overlapping self-similar sets. We investigate how the Hausdorff dimension and measure of a self-similar set K ⊆ ℝᵈ behave under linear mappings. This depends on the nature of the group T generated by the orthogonal parts of the defining maps of K. We show that if T is finite then every linear image of K is a graph directed attractor and there exists at least one projection of K such that the dimension drops under projection. In general, with no restrictions on T we establish that Hᵗ (L ∘ O(K)) = Hᵗ (L(K)) for every element O of the closure of T , where L is a linear map and t = dim[sub]H K. We also prove that for disjoint subsets A and B of K we have that Hᵗ (L(A) ∩ L(B)) = 0. Hochman and Shmerkin showed that if T is dense in SO(d; ℝ) and the strong separation condition is satisfied then dim[sub]H (g(K)) = min {dim[sub]H K; l} for every continuously differentiable map g of rank l. We deduce the same result without any separation condition and we generalize a result of Eroğlu by obtaining that Hᵗ (g(K)) = 0. We show that for the attractor (K1, … ,Kq) of a graph directed iterated function system, for each 1 ≤ j ≤ q and ε > 0 there exists a self-similar set K ⊆ Kj that satisfies the strong separation condition and dim[sub]H Kj - ε < dim[sub]H K. We show that we can further assume convenient conditions on the orthogonal parts and similarity ratios of the defining similarities of K. Using this property we obtain results on a range of topics including on dimensions of projections, intersections, distance sets and sums and products of sets. We study the situations where the Hausdorff measure and Hausdorff content of a set are equal in the critical dimension. Our main result here shows that this equality holds for any subset of a set corresponding to a nontrivial cylinder of an irreducible subshift of finite type, and thus also for any self-similar or graph directed self-similar set, regardless of separation conditions. The main tool in the proof is an exhaustion lemma for Hausdorff measure based on the Vitali's Covering Theorem. We also give several examples showing that one cannot hope for the equality to hold in general if one moves in a number of the natural directions away from `self-similar'. Finally we consider an analogous version of the problem for packing measure. In this case we need the strong separation condition and can only prove that the packing measure and δ-approximate packing pre-measure coincide for sufficiently small δ > 0.
|
Page generated in 0.0967 seconds