• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 10
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 22
  • 19
  • 18
  • 16
  • 14
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Limite d'échelle de cartes aléatoires en genre quelconque / Scaling Limit of Arbitrary Genus Random Maps

Bettinelli, Jérémie 26 October 2011 (has links)
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes tend en loi, au moins à extraction près, vers un espace métrique limite aléatoire lorsque n tend vers l'infini. Cette convergence s'entend au sens de la topologie de Gromov--Hausdorff. On dispose de plus des informations suivantes sur l'espace limite que l'on obtient. Dans le premier cas, c'est presque sûrement un espace de dimension de Hausdorff 4 homéomorphe à la surface de genre g. Dans le second cas, c'est presque sûrement un espace de dimension 4 avec une frontière de dimension 2, homéomorphe au disque unité de R^2. Nous montrons en outre que, dans le second cas, si la longueur du bord est un petit~o de la racine carrée du nombre de faces, on obtient la même limite que pour les quadrangulations sans bord, c'est-à-dire la carte brownienne, et l'extraction n'est plus requise. / In this work, we discuss the scaling limits of two particular classes of maps. In a first time, we address bipartite quadrangulations of fixed positive genus g and, in a second time, planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We view these objects as metric spaces by endowing their sets of vertices with the graph metric, suitably rescaled.We show that a map uniformly chosen among the maps having n faces in one of these two classes converges in distribution, at least along some subsequence, toward a limiting random metric space as n tends to infinity. This convergence holds in the sense of the Gromov--Hausdorff topology on compact metric spaces. We moreover have the following information on the limiting space. In the first case, it is almost surely a space of Hausdorff dimension 4 that is homeomorphic to the genus g surface. In the second case, it is almost surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic to the unit disc of R^2. We also show that in the second case, if the length of the boundary is little-o of the square root of the number of faces, the same convergence holds without extraction and the limit is the same as for quadrangulations without boundary, that is the Brownian map.
52

Semi-groupes de matrices et applications / Matrix semigroups and applications

Mercat, Paul 11 December 2012 (has links)
Nous étudions les semi-groupes de matrices avec des points de vue variés qui se re-coupent. Le point de vue de la croissance s’avère relié à un point de vue géométrique : nous avons partiellement généralisé aux semi-groupes un théorème de Patterson-Sullivan-Paulin sur les groupes, qui donne l’égalité entre exposant critique et dimension de Hausdorff de l’ensemble limite. Nous obtenons cela dans le cadre général des semi-groupes d’isométries d’un espace Gromov-hyperbolique, et notre preuve nous a permis d’obtenir également d’autres résultats nouveaux. Le point de vue informatique s’avère également relié à la croissance, puisque la notion de semi-groupe fortement automatique, que nous avons introduit, permet de calculer les exposants critiques exactes de semi-groupes de développement en base β. Et ce point de vue donne également beaucoup d’autres informations sur ces semi-groupes. Cette notion de croissance s’avère aussi reliée à des conjectures sur les fractions continues telles que celle de Zaremba. Et c’est en étudiant certains semi-groupes de matrices que nous avons pu démontrer des résultats sur les fractions continues périodiques bornées qui permettent de petites avancées dans la résolution d'une conjecture de McMullen. / We study matrix semigroups with different point of view that overlaps. The growth point of view seems to be related with the geometric point of view : we partially generalize to the semigroups a theorem on groups of Patterson-Sullivan-Paulin, that give the equality between the critical exponent and the Hausdorff dimension of the limit set. We obtain this in the general framework of isometries of a Gromov-hyperbolic space, and our proof give also others new results. The computer science point of view is also related to the growth, since we obtain a way to calculate exact values of critical exponents of somes β-adic development semigroups, from a notion of automatic semigroups that we introduce. Furthermore this point of view give a lot of information on these semigroups. This notion of growth shows to be also related to conjectures on continued fractions like Zaremba’s one. And by studing some matrix semigroups we were able to prove some results on bounded periodic continued fractions, doing a little step in the resolution of a conjecture of McMullen.
53

Fractal sets and dimensions

Leifsson, Patrik January 2006 (has links)
<p>Fractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics.</p><p>In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared.</p><p>A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.</p>
54

Fractal sets and dimensions

Leifsson, Patrik January 2006 (has links)
Fractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics. In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared. A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.
55

Sur la dimension de Minkowski des quasicercles / On Minkowski dimension of quasicircles

Le, Thanh Hoang Nhat 05 October 2012 (has links)
Pour accéder au résumé en français à la fin de la thèse, ouvrir le fichier du texte intégral / Pour accéder au résumé en anglais à la fin de la thèse, ouvrir le fichier du texte intégral
56

Local times of Brownian motion

Mukeru, Safari 09 1900 (has links)
After a review of the notions of Hausdorff and Fourier dimensions from fractal geometry and Fourier analysis and the properties of local times of Brownian motion, we study the Fourier structure of Brownian level sets. We show that if δa(X) is the Dirac measure of one-dimensional Brownian motion X at the level a, that is the measure defined by the Brownian local time La at level a, and μ is its restriction to the random interval [0, L−1 a (1)], then the Fourier transform of μ is such that, with positive probability, for all 0 ≤ β < 1/2, the function u → |u|β|μ(u)|2, (u ∈ R), is bounded. This growth rate is the best possible. Consequently, each Brownian level set, reduced to a compact interval, is with positive probability, a Salem set of dimension 1/2. We also show that the zero set of X reduced to the interval [0, L−1 0 (1)] is, almost surely, a Salem set. Finally, we show that the restriction μ of δ0(X) to the deterministic interval [0, 1] is such that its Fourier transform satisfies E (|ˆμ(u)|2) ≤ C|u|−1/2, u 6= 0 and C > 0. Key words: Hausdorff dimension, Fourier dimension, Salem sets, Brownian motion, local times, level sets, Fourier transform, inverse local times. / Decision Sciences / PhD. (Operations Research)
57

Comportement asymptotique des systèmes de fonctions itérées et applications aux chaines de Markov d'ordre variable / Asymptotic behaviour of iterated function systems and applications to variable length Markov chains

Dubarry, Blandine 14 June 2017 (has links)
L'objet de cette thèse est l'étude du comportement asymptotique des systèmes de fonctions itérées (IFS). Dans un premier chapitre, nous présenterons les notions liées à l'étude de tels systèmes et nous rappellerons différentes applications possibles des IFS telles que les marches aléatoires sur des graphes ou des pavages apériodiques, les systèmes dynamiques aléatoires, la classification de protéines ou encore les mesures quantiques répétées. Nous nous attarderons sur deux autres applications : les chaînes de Markov d'ordre infini et d'ordre variable. Nous donnerons aussi les principaux résultats de la littérature concernant l'étude des mesures invariantes pour des IFS ainsi que ceux pour le calcul de la dimension de Hausdorff. Le deuxième chapitre sera consacré à l'étude d'une classe d'IFS composés de contractions sur des intervalles réels fermés dont les images se chevauchent au plus en un point et telles que les probabilités de transition sont constantes par morceaux. Nous donnerons un critère pour l'existence et pour l'unicité d'une mesure invariante pour l'IFS ainsi que pour la stabilité asymptotique en termes de bornes sur les probabilités de transition. De plus, quand il existe une unique mesure invariante et sous quelques hypothèses techniques supplémentaires, on peut montrer que la mesure invariante admet une dimension de Hausdorff exacte qui est égale au rapport de l'entropie sur l'exposant de Lyapunov. Ce résultat étend la formule, établie dans la littérature pour des probabilités de transition continues, au cas considéré ici des probabilités de transition constantes par morceaux. Le dernier chapitre de cette thèse est, quant à lui, consacré à un cas particulier d'IFS : les chaînes de Markov de longueur variable (VLMC). On démontrera que sous une condition de non-nullité faible et de continuité pour la distance ultramétrique des probabilités de transitions, elles admettent une unique mesure invariante qui est attractive pour la convergence faible. / The purpose of this thesis is the study of the asymptotic behaviour of iterated function systems (IFS). In a first part, we will introduce the notions related to the study of such systems and we will remind different applications of IFS such as random walks on graphs or aperiodic tilings, random dynamical systems, proteins classification or else $q$-repeated measures. We will focus on two other applications : the chains of infinite order and the variable length Markov chains. We will give the main results in the literature concerning the study of invariant measures for IFS and those for the calculus of the Hausdorff dimension. The second part will be dedicated to the study of a class of iterated function systems (IFSs) with non-overlapping or just-touching contractions on closed real intervals and adapted piecewise constant transition probabilities. We give criteria for the existence and the uniqueness of an invariant probability measure for the IFSs and for the asymptotic stability of the system in terms of bounds of transition probabilities. Additionally, in case there exists a unique invariant measure and under some technical assumptions, we obtain its exact Hausdorff dimension as the ratio of the entropy over the Lyapunov exponent. This result extends the formula, established in the literature for continuous transition probabilities, to the case considered here of piecewise constant probabilities. The last part is dedicated to a special case of IFS : Variable Length Markov Chains (VLMC). We will show that under a weak non-nullness condition and continuity for the ultrametric distance of the transition probabilities, they admit a unique invariant measure which is attractive for the weak convergence.
58

Lattice Point Counting through Fractal Geometry and Stationary Phase for Surfaces with Vanishing Curvature

Campolongo, Elizabeth Grace 02 September 2022 (has links)
No description available.
59

Divers aspects des arbres aléatoires : des arbres de fragmentation aux cartes planaires infinies / Various aspects of random trees : from fragmentation trees to infinite planar maps

Stephenson, Robin 27 June 2014 (has links)
Nous nous intéressons à trois problèmes issus du monde des arbres aléatoires discrets et continus. Dans un premier lieu, nous faisons une étude générale des arbres de fragmentation auto-similaires, étendant certains résultats de Haas et Miermont en 2006, notamment en calculant leur dimension de Hausdorff sous des hypothèses malthusiennes. Nous nous intéressons ensuite à une suite particulière d’arbres discrets k-aires, construite de manière récursive avec un algorithme similaire à celui de Rémy de 1985. La taille de l’arbre obtenu à la n-ième étape est de l’ordre de n^(1/k), et après renormalisation, on trouve que la suite converge en probabilité vers un arbre de fragmentation. Nous étudions également des manières de plonger ces arbres les uns dans les autres quand k varie. Dans une dernière partie, nous démontrons la convergence locale en loi d’arbres de Galton-Watson multi-types critiques quand on les conditionne à avoir un grand nombre de sommets d’un certain type fixé. Nous appliquons ensuite ce résultat aux cartes planaires aléatoire pour obtenir la convergence locale en loi de grandes cartes de loi de Boltzmann critique vers une carte planaire infinie. / We study three problems related to discrete and continuous random trees. First, we do a general study of self-similar fragmentation trees, extending some results established by Haas and Miermont in 2006, in particular by computing the Hausdorff dimension of these trees under some Malthusian hypotheses. We then work on a particular sequence of k-ary growing trees, defined recursively with a similar method to Rémy’s algorithm from 1985. We show that the size of the tree obtained at the n-th step if of order n^(1/k), and, after renormalization, we prove that the sequence convergences to a fragmentation tree. We also study embeddings of the limiting trees as k varies. In the last chapter, we show the local convergence in distribution of critical multi-type Galton-Watson trees conditioned to have a large number of vertices of a fixed type. We then apply this result to the world of random planar maps, obtaining that large critical Boltzmann-distributed maps converge locally in distribution to an infinite planar map.
60

Marche aléatoire indexée par un arbre et marche aléatoire sur un arbre / Tree-indexed random walk and random walk on trees

Lin, Shen 08 December 2014 (has links)
L’objet de cette thèse est d’étudier plusieurs modèles probabilistes reliant les marches aléatoires et les arbres aléatoires issus de processus de branchement critiques.Dans la première partie, nous nous intéressons au modèle de marche aléatoire à valeurs dans un réseau euclidien et indexée par un arbre de Galton–Watson critique conditionné par la taille. Sous certaines hypothèses sur la loi de reproduction critique et la loi de saut centrée, nous obtenons, dans toutes les dimensions, la vitesse de croissance asymptotique du nombre de points visités par cette marche, lorsque la taille de l’arbre tend vers l’infini. Ces résultats nous permettent aussi de décrire le comportement asymptotique du nombre de points visités par une marche aléatoire branchante, quand la taille de la population initiale tend vers l’infini. Nous traitons également en parallèle certains cas où la marche aléatoire possède une dérive constante non nulle.Dans la deuxième partie, nous nous concentrons sur les propriétés fractales de la mesure harmonique des grands arbres de Galton–Watson critiques. On comprend par mesure harmonique la distribution de sortie, hors d’une boule centrée à la racine de l’arbre, d’une marche aléatoire simple sur cet arbre. Lorsque la loi de reproduction critique appartient au domaine d’attraction d’une loi stable, nous prouvons que la masse de la mesure harmonique est asymptotiquement concentrée sur une partie de la frontière, cette partie ayant une taille négligeable par rapport à celle de la frontière. En supposant que la loi de reproduction critique a une variance finie, nous arrivons à évaluer la masse de la mesure harmonique portée par un sommet de la frontière choisi uniformément au hasard. / The aim of this Ph. D. thesis is to study several probabilistic models linking the random walks and the random trees arising from critical branching processes.In the first part, we consider the model of random walk taking values in a Euclidean lattice and indexed by a critical Galton–Watson tree conditioned by the total progeny. Under some assumptions on the critical offspring distribution and the centered jump distribution, we obtain, in all dimensions, the asymptotic growth rate of the range of this random walk, when the size of the tree tends to infinity. These results also allow us to describe the asymptotic behavior of the range of a branching random walk, when the size of the initial population goes to infinity. In parallel, we treat likewise some cases where the random walk has a non-zero constant drift.In the second part, we focus on the fractal properties of the harmonic measure on large critical Galton–Watson trees. By harmonic measure, we mean the exit distribution from a ball centered at the root of the tree by simple random walk on this tree. If the critical offspring distribution is in the domain of attraction of a stable distribution, we prove that the mass of the harmonic measure is asymptotically concentrated on a boundary subset of negligible size with respect to that of the boundary. Assuming that the critical offspring distribution has a finite variance, we are able to calculate the mass of the harmonic measure carried by a random vertex uniformly chosen from the boundary.

Page generated in 0.1015 seconds