• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 23
  • 18
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Impact des propriétés des gaz d'échappement recyclés sur l'initiation et le déroulement de la combustion : caractérisation paramétrique de la réactivité de l'EGR

Piperel, Aurélie 18 November 2008 (has links) (PDF)
Du fait des nouvelles réglementations sur les émissions de polluants à l'échappement, de nouveaux procédés de combustion LTC (Low Temperature Combustion) tels que le HCCI (Homogeneous Charge Compression Ignition) ont vu le jour. En effet, en mode HCCI, peu de particules et peu d'oxydes d'azote sont émis, mais il est nécessaire de contrôler précisément l'initiation et le déroulement de la combustion : soit par des solutions technologiques novatrices, soit par une formulation de carburant appropriée, soit par des forts taux d'EGR (Exhaust Gas Recirculation) dont la composition et la réactivité peuvent varier, soit par la combinaison des différents éléments précédents. Ce sont la formulation du carburant, la réactivité de l'EGR ainsi que la variation de sa composition qui ont fait l'objet de cette thèse.<br />Afin de pouvoir connaître la composition de ces gaz recyclés ainsi que l'influence des paramètres du moteur sur cette composition, une étude sur banc moteur HCCI a été réalisée. Pour pouvoir ensuite étudier l'influence de l'ajout de certaines espèces composantes des gaz brûlés sur la combustion HCCI, deux dispositifs expérimentaux ont été utilisés : un moteur HCCI et un réacteur auto-agité.<br />Cette thèse a ainsi pu mettre en évidence la composition des gaz brûlés en mode HCCI jusqu'alors méconnue, l'influence des paramètres du moteur ainsi que celle de la formulation du carburant sur cette composition, l'évolution de la composition au sein même du circuit de recirculation mais surtout l'importance de l'impact chimique de ces gaz recyclés sur l'initiation et le déroulement de la combustion HCCI.
52

Potentiel de la combustion HCCI et injection précoce / Potential of HCCI combustion and early injection

André, Mathieu 15 December 2010 (has links)
Depuis plusieurs années, l’une des problématiques sociétales est de diminuer les émissions de polluants et de gaz à effet de serre dans l’atmosphère. Le secteur du transport terrestre est directement concerné par ces considérations. Le moteur Diesel semble promis à un bel avenir grâce à son rendement supérieur à celui du moteur à allumage commandé, conduisant à de plus faibles rejets de CO2. Cependant, sa combustion génère des émissions d’oxyde d’azote (NOx) et de particules dans l’atmosphère. Les normes anti-pollution étant de plus en plus sévères et les incitations à diminuer les consommations de carburant de plus en plus fortes, le moteur Diesel est confronté à une problématique NOx/particules/consommation toujours plus difficile à résoudre. Une des voies envisagées consiste à modifier le mode de combustion afin de limiter les émissions polluantes à la source tout en conservant de faibles consommations. La voie la plus prometteuse est la combustion HCCI (Homogeneous Charge Compression Ignition) obtenue par injections directes précoces. Plusieurs limitations critiques doivent cependant être revues et améliorées : le mouillage des parois par le carburant liquide et le contrôle de la combustion à forte charge. Le but de cette thèse est ainsi de mieux comprendre les phénomènes mis en jeu lors de la combustion HCCI à forte charge obtenue par des multi-injections directes précoces. Une méthodologie a été mise au point afin de détecter le mouillage des parois du cylindre, ce qui a permis de comprendre l’effet du phasage et de la pression d’injection sur cette problématique. Une stratégie optimale de multi-injections permettant d’atteindre une charge élevée sans mouiller les parois a ainsi été développée et choisie. Nous avons ensuite pu mettre en évidence le potentiel de la stratification par la dilution en tant que moyen de contrôle de la combustion en admettant le diluant dans un seul des 2 conduits d’admission. Des mesures réalisées en complémentarité sur le même moteur mais en version ‘optique’, ont permis, à partir de la technique de Fluorescence Induite par Laser, de montrer que concentrer le diluant dans les zones réactives où se situe le carburant permet un meilleur contrôle de la combustion, ce qui permet d’amener le taux de dilution a des niveaux faisables technologiquement. / For several years, reduce pollutant and greenhouse gas emissions in the atmosphere is become a leitmotiv. The automotive world is directly affected by these considerations. Diesel engine has a promising future thanks to its efficiency higher than that of S.I. engine, leading to lower CO2 emissions. However, Diesel combustion emits nitrogen oxides (NOx) and particulates in the atmosphere. Emissions regulations are more and more severe, and considerations about fuel consumption are more and more significant. Thus, Diesel engine has to face a NOx/particulates/consumption issue that is more and more difficult to answer. One of the considered ways to reduce pollutant emissions while maintaining low fuel consumptions is to change the combustion mode. The most promising way is Homogeneous Charge Compression Ignition (HCCI) combustion with early direct injections. However, two major issues have to be answered: the wall wetting and the combustion control at high load. Thus, the objective of this PhD thesis is to better understand phenomena occurring during HCCI combustion at high load with early direct injections in order to answer these issues. We have developed a new methodology to detect the cylinder wall wetting process. This allowed to understand the effects of injection phasing and injection pressure on this issue. A multiple injections strategy has been tested and improved. It reaches a high load without cylinder wall wetting. Then, we have highlighted the potential of dilutant stratification as a technique of control of combustion. This technique is based on the introduction of dilutant in one inlet pipe while air is introduced in the other. The use of Laser Induced Fluorescence imaging on the same engine but with optical accesses showed that condensing dilutant in the reactive zones where the fuel is improves combustion control and allows the use of reasonable dilution level.
53

Numerical investigation on the in-cylinder flow with SI and CAI valve timings

Beauquel, Julien A. January 2016 (has links)
The principle of controlled auto-ignition (CAI) is to mix fuel and air homogeneously before compressing the mixture to the point of auto-ignition. As ignition occurs simultaneously, CAI engines operate with lean mixtures preventing high cylinder pressures. CAI engines produce small amounts of nitrogen oxides (NOx) due to low combustion temperatures while maintaining high compression ratios and engine efficiencies. Due to simultaneous combustion and lean mixtures, CAI engines are restricted between low and mid load operations. Various strategies have been studied to improve the load limit of CAI engines. The scope of the project is to investigate the consequences of varying valve timing, as a method to control the mixture temperature within the combustion chamber and therefore, controlling the mixture auto-ignition point. This study presents computational fluid dynamics (CFD) modelling results of transient flow, inside a 0.45 litre Lotus single cylinder engine. After a validation process, a chemical kinetics model is combined with the CFD code, in order to study in-cylinder temperatures, the mixture distribution during compression and to predict the auto-ignition timing. The first part of the study focuses on validating the calculated in-cylinder velocities. A mesh sensitivity study is performed as well as a comparison of different turbulence models. A method to reduce computational time of the calculations is presented. The effects of engine speed on charge delay and charge amount inside the cylinder, the development of the in-cylinder flow field and the variation of turbulence parameters during the intake and compression stroke, are studied. The second part of the study focuses on the gasoline mixture and the variation of the valve timing, to retain different ratios of residual gases within the cylinder. After validation of the model, a final set of CFD calculations is performed, to investigate the effects of valve timing on flow and the engine parameters. The results are then compared to a fully homogeneous mixture model to study the benefits of varying valve duration. New key findings and contributions to CAI knowledge were found in this investigation. Reducing the intake and exhaust valve durations created a mixture temperature stratification and a fuel concentration distribution, prior to auto-ignition. It resulted in extending the heat release rate duration, improving combustion. However, shorter valve timing durations also showed an increase in heat transfer, pumping work and friction power, with a decrease of cylinder indicated efficiency. Valve timing, as a method to control auto-ignition, should only be used when the load limit of CAI engines, is to be improved.
54

Multidimensional Highway Construction Cost Indexes Using Dynamic Item Basket

Shrestha, Joseph, Jeong, H. David, Gransberg, Douglas D. 01 August 2017 (has links)
A highway construction cost index (HCCI) is an indicator of the purchasing power of a highway agency. Thus, it must reflect the actual construction market conditions. However, current methods used by most state departments of transportation are not robust enough to meet this primary goal due to (1) a significantly insufficient sample size of bid items used in HCCI calculation; and (2) inability to address the need to track highway construction market conditions in specific submarket segments such as, but not limited to, various project types, sizes, and locations. This study proposes an advanced methodology to overcome these apparent limitations using two new concepts: (1) dynamic item basket; and (2) multidimensional HCCIs. The dynamic item basket process identifies and utilizes an optimum amount of bid-item data to calculate HCCIs in order to minimize the potential error due to a small sample size, which leads to a better reflection of the current market conditions. Multidimensional HCCIs dissect the state highway construction market into distinctively smaller sectors of interest and thus, allow state Departments of Transportation to understand the market conditions with much higher granularity. A framework is developed to integrate these two concepts and a standalone prototype system, named the Dyna-Mu-HCCI System, is developed to automate the data-processing part of the framework. The historical bid data of the Montana Department of Transportation are used to evaluate the performance of the Dyna-Mu-HCCI System and measure the effects of the dynamic item basket (DIB) and multidimensional HCCIs. The results show an eightfold increase in terms of the number of bid items used in calculating HCCIs and at least a 20% increase in terms of the total cost of bid items used. In addition, the multidimensional HCCIs reveal different cost-change patterns from different highway sectors. For example, the bridge construction market historically shows a very different trend compared with the overall highway construction market. The new methodology is expected to aid state Departments of Transportation in making more-reliable decisions in preparing business plans and budgets with more accurate and detailed information about the construction market conditions. Further, the prototype Dyna-Mu-HCCI System is expected to significantly facilitate the HCCI calculation process and rapidly implement this new system.
55

A study of controlled auto ignition (CAI) combustion in internal combustion engines

Milovanović, Nebojša January 2003 (has links)
Controlled Auto Ignition (CAI) combustion is a new combustion principle in internal combustion engines which has in recent years attracted increased attention. In CAI combustion, which combines features of spark ignition (SI) and compression ignition (CI) principles, air/fuel mixture is premixed, as in SI combustion and auto-ignited by piston compression as in CI combustion. Ignition is provided in multiple points, and thus the charge gives a simultaneous energy release. This results in uniform and simultaneous auto-ignition and chemical reaction throughout the whole charge without flame propagation. CAI combustion is controlled by the chemical kinetics of air/fuel mixture with no influence of turbulence. The CAI engine offers benefits in comparison to spark ignited and compression ignited engines in higher efficiency due to elimination of throttling losses at part and idle loads. There is a possibility to use high compression ratios since it is not knock limited, and in significant lower NOx emission (≈90%) and particle matter emission (≈50%), due to much lower combustion temperature and elimination of fuel rich zones. However, there are several disadvantages of the CAI engine that limits its practical application, such as high level of hydrocarbon and carbon monoxide emissions, high peak pressures, high rates of heat release, reduced power per displacement and difficulties in starting and controlling the engine. Controlling the operation over a wide range of loads and speeds is probably the major difficulty facing CAI engines. Controlling is actually two-components as it consists of auto-ignition phasing and controlling the rates of heat release. As CAI combustion is controlled by chemical kinetics of air/fuel mixture, the auto-ignition timing and heat release rate are determined by the charge properties such as temperature, composition and pressure. Therefore, changes in engine operational parameters or in types of fuel, results in changing of the charge properties. Hence, the auto-ignition timing and the rate of heat release. The Thesis investigates a controlled auto-ignition (CAI) combustion in internal combustion engines suitable for transport applications. The CAI engine environment is simulated by using a single-zone, homogeneous reactor model with a time variable volume according to the slider-crank relationship. The model uses detailed chemical kinetics and distributed heat transfer losses according to Woschini's correlation [1]. The fundamentals of chemical kinetics, and their relationship with combustion related problems are presented. The phenomenology and principles of auto-ignition process itself and its characteristics in CAI combustion are explained. The simulation model for representing CAI engine environment is established and calibrated with respect to the experimental data. The influences of fuel composition on the auto-ignition timing and the rate of heat release in a CAI engine are investigated. The effects of engine parameters on CAI combustion in different engine concepts fuelled with various fuels are analysed. The effects of internal gas recirculation (IEGR) in controlling the auto-ignition timing and the heat release rate in a CAI engine fuelled with different fuels are investigated. The effects of variable valve timings strategy on gas exchange process in CAI engine fuelled with commercial gasoline (95RON) are analysed.
56

Exploration And Assessment of HCCI Strategies for a Multi-Cylinder Heavy-Duty Diesel Engine

Pandey, Sunil Kumar January 2016 (has links) (PDF)
Homogeneous Charge Compression Ignition (HCCI) combustion is an alternative combustion mode in which the fuel is homogeneously mixed with air and is auto-ignited by compression. Due to charge homogeneity, this mode is characterized by low equivalence ratios and temperatures giving simultaneously low nitric oxide (NOx) and soot in diesel engines. The conventional problem of NOx-soot trade-off is avoided in this mode due to absence of diffusion combustion. This mode can be employed at part load conditions while maintaining conventional combustion at high load thus minimizing regulatory cycle emissions and reducing cost of after-treatment systems. The present study focuses on achieving this mode in a turbocharged, common rail, direct injection, four-cylinder, heavy duty diesel engine. Specifically, the work involves a combination of three-dimensional CFD simulations and experiments on this engine to assess both traditional and novel strategies related to fuel injection. The first phase of the work involved a quasi-dimensional simulation of the engine to assess potential of achieving HCCI. This was done using a zero-dimensional, single-zone HCCI combustion model with n-heptane skeletal chemistry along with a one-dimensional model of intake and exhaust systems. The feasibility of operation with realistic knock values with high EGR rate of 60% was observed. The second aspect of the work involved three-dimensional CFD simulations of the in-cylinder process with wall film prediction to evaluate injection strategies associated with Early Direct Injection (EDI). The extended Coherent Flame Model-3Zone (ECFM-3Z) was employed for combustion simulation of conventional CI and EDI, and was validated with experimental in-cylinder pressure data from the engine. A new Uniformity Index (UI) parameter was defined to assess charge homogeneity. Results showed significant in-homogeneity and presence of wall film for EDI. Simulations were conducted to assess improvement of charge homogeneity by several strategies; narrow spray cone angle, injection timing, multiple injections, intake air heating, Port Fuel Injection (PFI) as well as combination of PFI and EDI. The maximum UI achieved by EDI was 0.78. The PFI strategy could achieve UI of 0.95; however, up to 50% of fuel remained trapped in the port after valve closure. This indicated that except EDI, none of the above-mentioned strategies could help achieve the benefits of the HCCI mode. The third part of the work involved engine experimentation to assess the EDI strategy. This strategy produced lower soot than that of conventional CI combustion with very short combustion duration, but led to high knock and NOx which is attributed to pool fire burning phenomenon of the wall film, as confirmed by CFD. An Optimized EDI (OptimEDI) strategy was then developed based on results of CFD and Design of Experiments. The Optim EDI consisted of triple injections with split ratio of 41%-45%-14% and advancing the first injection. This strategy gave 20% NOx and soot reduction over the conventional CI mode. Although this strategy gave encouraging results, there was a need for more substantial reduction in emissions without sacrificing efficiency. Hence, a novel concept of utilizing air-assisted Injection (AAI) into the EGR stream was employed, as this implied injecting very small droplets of fuel into the intake which would have sufficient residence time to evaporate before reaching the cylinder, thereby enabling HCCI. The fourth and final part of the work involved engine experimentation with AAI, and combination of OptimEDI with AAI. Results with 20% EGR showed that 5 to 10% of AAI gave further reduction in NOx but not in soot. With experiments involving 48% EGR rate, there was soot reduction of 75% due to combined AAI-EDI. NOx was negligible due to the high EGR rate. Thus, the significant contribution of this work is in proving that combining AAI with EDI as a novel injection strategy leads to substantial NOx and soot reduction.
57

Evaluation of combustion concepts and scavenging configurations in a 2-Stroke compression-ignition engine for future automotive powerplants

Thein, Kévin Jean Lucien 08 March 2021 (has links)
[ES] El trabajo de investigación presentado en esta tesis es el resultado de varios años dedicados al desarrollo, la implementación y la optimización de dos tecnologías combinadas: un concepto de combustión innovador y una arquitectura de motor de nuevo diseño. Esta investigacion se ha realizado en el marco de una colaboración con Renault SA, como continuación de las actividades realizadas en el proyecto europeo POWERFUL (POWERtrain for FUture Light-duty vehicles) por un lado,y en el marco del proyecto europeo REWARD (Real World Advanced technologies foR Diesel engines), devenido como continuación del proyecto POWERFUL en el marco del programa de investigación Horizonte 2020, por otro lado. Los principales objetivos de estos estudios eran evaluar el potencial del concepto de combustión parcialmente premezclada (PPC) operando con gasolina como combustible en un innovador motor de 2 tiempos de válvulas en culata, y luego diseñar una nueva geometría de motor de 2 tiempos utilizando la arquitectura Uniflujo para superar los principales problemas y limitaciones observados durante la primera etapa, que se pueden resumir principalmente en el rendimiento de barrido (especialmente trabajando en cargas elevadas). La metodología diseñada para este trabajo de investigación sigue un enfoque teórico-experimental. La evaluación del concepto de combustión PPC operando con gasolina se llevó a cabo principalmente con un enfoque experimental con el apoyo del análisis en línea directamente en el banco de ensayo, seguido de un exhaustivo tratamiento posterior de los datos y de un análisis detallado del proceso de combustión utilizando herramientas de diagnóstico. Por el contrario, el desarrollo del nuevo motor Uniflujo de 2 tiempos consistió principalmente en iteraciones sobre modelado 3D-CFD, si bien las actividades experimentales fueron fundamentales para validar las diferentes soluciones propuestas y evaluar su sensibilidad ante diferentes parámetros de interés utilizando una metodología de Diseño de Experimentos (DoE). La primera parte del trabajo se ha dedicado a la comprensión de los procesos termodinámicos involucrados en la combustión operando con el concepto PPC en un motor de 2 tiempos de válvulas en culata utilizando gasolina como combustible, y a evaluar su potencial en términos de emisiones contaminantes, consumo de combustible y ruido. Por último, se ha realizado un trabajo de exploración para ampliar en la medida de lo posible el rango de funcionamiento de este concepto de combustión en esta configuración específica del motor, investigando especialmente el rendimiento en cargas bajas en todo el rango de regímenes de giro del motor, y estableciendo también las principales limitaciones para la operación en cargas altas. La segunda parte de la tesis se ha centrado en el desarrollo y optimización teórica de un motor Uniflujo de 2 tiempos de nuevo diseño, incluyendo su fabricación y validación experimental. El objetivo principal era optimizar, utilizando principalmente simulaciones 3D-CFD, el rendimiento de barrido de esta arquitectura de 2 tiempos mediante el diseño de nuevas geometrías de puertos de admisión, permitiendo un gran control sobre el flujo de aire hacia y a través del cilindro para barrer al máximo los gases quemados y minimizar el cortocircuito de aire fresco hacia el escape. Las soluciones óptimas se evaluaron experimentalmente siguiendo la metodología DoE, antes de comparar finalmente los resultados de rendimiento de barrido con la anterior arquitectura de motor de 2 tiempos con válvulas en culata. / [CA] El treball de recerca presentat en aquesta tesi és el resultat de diversos anys dedicats al desenvolupament, la implementació i l'optimització de dues tecnologies combinades: un concepte de combustió innovador i una arquitectura de motor de nou disseny. Aquesta recerca s'ha realitzat en el marc d'una col·laboració amb Renault SA, com a continuació de les activitats del projecte europeu *POWERFUL (*POWERtrain *for *FUture Light-*duty *vehicles) d'una banda, i en el marc del projecte europeu *REWARD (Real *World *Advanced *technologies *foR Dièsel *engines), es devingut com a continuació del projecte *POWERFUL en el marc del programa d'investigació Horitzó 2020, d'altra banda. Els principals objectius d'aquests estudis eren avaluar el potencial del concepte de combustió parcialment premesclada (PPC) operant amb gasolina com a combustible en un innovador motor de 2 temps de vàlvules en culata, i després dissenyar una nova geometria de motor de 2 temps utilitzant l'arquitectura Uniflux per a superar els principals problemes i limitacions observats durant la primera etapa, que es poden resumir principalment en el rendiment d'escombratge (especialment treballant en càrregues elevades). La metodologia dissenyada per a realitzar aquests treballs de recerca segueix un enfocament tant experimental com teòric. L'avaluació del concepte de combustió PPC operant amb gasolina es va dur a terme principalment amb un enfocament experimental, però sempre amb el suport de l'anàlisi en línia directament en el banc d'assaig, seguit d'un exhaustiu tractament posterior de les dades combinat amb una anàlisi detallada del procés de combustió utilitzant eines de diagnòstic. Per contra, el desenvolupament i el disseny del nou motor Uniflux de 2 temps va consistir principalment en iteracions sobre modelatge 3D-CFD, si bé les activitats experimentals van ser fonamentals per a validar les diferents solucions proposades i avaluar la seua sensibilitat davant una sèrie de paràmetres d'interés utilitzant una metodologia de Disseny d'Experiments (DoE). La primera part del treball s'ha dedicat a la comprensió dels processos termodinàmics involucrats en la combustió operant amb el concepte de combustió PPC en un motor de 2 temps de vàlvules en culata utilitzant gasolina com a combustible, i a avaluar el seu potencial en termes d'emissions contaminants, consum de combustible i també de soroll. Finalment, s'ha fet un treball d'exploració per a ampliar en la mesura que siga possible el rang de funcionament d'aquest concepte de combustió utilitzant eixa configuració específica del motor, investigant especialment el rendiment en càrregues baixes en tot el rang de règims de gir del motor, i establint també les principals limitacions per a l'operació en càrregues altes. La segona part de la tesi s'ha centrat en el desenvolupament i optimització teòrica d'un motor Uniflux de 2 temps de nou disseny, incloent la seua fabricació i validació experimental. L'objectiu principal era optimitzar, utilitzant principalment simulacions 3D-CFD, el rendiment d'escombratge d'aquesta arquitectura de 2 temps mitjançant el disseny de noves geometries de ports d'admissió, permetent un gran control sobre el flux d'aire cap a i a través del cilindre per a escombrar al màxim els gasos cremats i minimitzar el curtcircuit d'aire fresc cap a l'escapament. Les solucions òptimes es van fabricar i van avaluar experimentalment seguint la metodologia DoE, abans de comparar finalment els resultats de rendiment d'escombratge amb l'anterior arquitectura de motor de 2 temps amb vàlvules en culata. / [EN] The research work presented in this thesis is the result of several years dedicated to the development, implementation and optimization of two combined technologies: an innovative combustion concept and a newly designed engine architecture. These investigations have been performed in the framework of a research collaboration with Renault SA following up the activities performed along the European POWERFUL project (POWERtrain for FUture Light-duty vehicles) on the one hand, and in the framework of the European REWARD project (REal World Advanced technologies foR Diesel engines), brought as a continuation of the POWERFUL project in the frame of the Horizon 2020 research program, on the other hand. The main objectives of these studies were to evaluate the potential of the Partially Premixed Combustion (PPC) concept operating with gasoline fuel in an innovative 2-Stroke poppet-valve engine, and then to design a new 2-Stroke engine geometry using the Uniflow architecture to overcome the main problems and limitations observed during the first stage, which can be mainly summarized to the scavenging performance (especially at high loads). The methodology designed for performing these investigation is based on both experimental and theoretical approaches. The evaluation of the gasoline PPC concept was carried out mainly experimentally, but always supported by online analysis directly on the test-bench and followed by a thorough post-processing of the data combined with a detailed analysis of the combustion using combustion diagnostic tools. On the contrary, the development and design of the new 2-Stroke Uniflow engine consisted mainly of 3D-CFD iterations, but experimental testing was crucial to validate the different solutions proposed and evaluate their sensitivity to a set of parameters of interest using a Design of Experiments (DoE) methodology. The first part of the work has been dedicated to the understanding of the thermodynamical processes involved in the combustion in a poppet-valve 2-Stroke engine operating with the gasoline PPC concept, and to evaluate its potential in terms of pollutant emissions, fuel consumption and also noise. Finally, a wide exploration has been performed to extend as much as possible the operating range of this combustion concept using that specific engine configuration, especially investigating the low loads performance throughout the full range of engine speeds, and also laying out the main limitations for high-to-full load operations. The second part of the thesis has been focused on the development and theoretical optimization of a newly designed 2-Stroke Uniflow engine, leading to manufacture and experimental validation. The main objective was to optimize, using mainly 3D-CFD modeling simulations, the scavenging performance of this 2-Stroke architecture by designing new intake ports geometries and to enable a great control over the air flow into and through the cylinder in order to scavenge the burnt gases as much as possible while minimizing the fresh air short-circuit to the exhaust. The optimum solutions were then manufactured and experimentally tested following a DoE methodology, before finally comparing the results of the scavenging performance to the previous 2-Stroke poppet-valve engine architecture. / Thein, KJL. (2021). Evaluation of combustion concepts and scavenging configurations in a 2-Stroke compression-ignition engine for future automotive powerplants [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/164044

Page generated in 0.0475 seconds