• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 13
  • 11
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 52
  • 51
  • 23
  • 14
  • 12
  • 9
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Instabilités hydrodynamiques des liquides magnétiques miscibles et non miscibles dans une cellule de Hele-Shaw

Igonin, Maksim 29 November 2004 (has links) (PDF)
Ce manuscrit décrit analytiquement et numériquement les instabilités d'un fluide magnétique dans une cellule de Hele-Shaw. On considère l'interface entre un fluide magnétique et un autre fluide non magnétique, miscible ou non, soumise à un champ magnétique homogène normal à la cellule ou à l'interface. Le champ démagnétisant est inhomogène à cette interface et génère un mouvement convectif des fluides. Dans la première partie, nous avons utilisé une analyse linéaire de stabilité entre deux liquides miscibles pour une distribution donnée de concentration à l'interface. Les résultats s'appliquent aussi à la stabilité d'un réseau de concentration induit par une expérience de Rayleigh forcé. Nous avons démontré que l'équation de Brinkman décrit mieux la dissipation visqueuse dans une cellule de Hele-Shaw que celle de Darcy. Nous avons trouvé que la viscosité (et non la diffusion massique) donnait à l'écoulement une échelle de longueur de l'ordre de l'épaisseur de la cellule dans le cas des forçages élevés. Dans la seconde partie de notre étude, nous avons modélisé la dynamique non linéaire de l'interface avec une tension superficielle par la méthode des intégrales de frontière. Nous avons décrit la modification des doigts de Saffman–Taylor par les forces magnétostatiques. Nous avons obtenu des structures dendritiques proches de celles observées expérimentalement et analysé quelques aspects de la formation des motifs.
52

Systèmes de particules en interaction, approche par flot de gradient dans l'espace de Wasserstein / Interacting particles systems, Wasserstein gradient flow approach

Laborde, Maxime 01 December 2016 (has links)
Depuis l’article fondateur de Jordan, Kinderlehrer et Otto en 1998, il est bien connu qu’une large classe d’équations paraboliques peuvent être vues comme des flots de gradient dans l’espace de Wasserstein. Le but de cette thèse est d’étendre cette théorie à certaines équations et systèmes qui n’ont pas exactement une structure de flot de gradient. Les interactions étudiées sont de différentes natures. Le premier chapitre traite des systèmes avec des interactions non locales dans la dérive. Nous étudions ensuite des systèmes de diffusions croisées s’appliquant aux modèles de congestion pour plusieurs populations. Un autre modèle étudié est celui où le couplage se trouve dans le terme de réaction comme les systèmes proie-prédateur avec diffusion ou encore les modèles de croissance tumorale. Nous étudierons enfin des systèmes de type nouveau où l’interaction est donnée par un problème de transport multi-marges. Une grande partie de ces problèmes est illustrée de simulations numériques. / Since 1998 and the seminal work of Jordan, Kinderlehrer and Otto, it is well known that a large class of parabolic equations can be seen as gradient flows in the Wasserstein space. This thesis is devoted to extensions of this theory to equations and systems which do not have exactly a gradient flow structure. We study different kind of couplings. First, we treat the case of nonlocal interactions in the drift. Then, we study cross diffusion systems which model congestion for several species. We are also interested in reaction-diffusion systems as diffusive prey-predator systems or tumor growth models. Finally, we introduce a new class of systems where the interaction is given by a multi-marginal transport problem. In many cases, we give numerical simulations to illustrate our theorical results.

Page generated in 0.0481 seconds