• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 11
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 95
  • 44
  • 40
  • 28
  • 19
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 11
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Comparação dos Perfis Transcricionais de Genes de Reparo e Duplicação do DNA e Medidas de Comprimento Telomérico entre Grupos de Indivíduos Jovens, Idosos e Centenários / Transcriptional Profiles of DNA Replication and Repair Genes and Telomere Length Measurements in Young, Elderly and Centenarians People

Silva, João Paulo Lopes da 26 June 2015 (has links)
A instabilidade genômica tem sido implicada como um dos principais fatores relacionados ao processo de envelhecimento. Esta é consequência do acumulo de danos no DNA em células somáticas continuamente expostas a fatores endógenos e exógenos. Um grupo de proteínas que desempenha diversos papéis na manutenção e estabilidade do genoma é formado pelas RecQ helicases, atuando em vários processos do metabolismo celular, tais como replicação do DNA, recombinação, reparo do DNA e manutenção dos telômeros. Algumas evidencias relacionam a expressão aberrante destas proteínas ao envelhecimento precoce. Com o objetivo de determinar os perfis de expressão transcricional de genes da família RecQ helicase e alguns genes envolvidos na via BER (Base excision repair), como PARP1, POL e APEX1 em células mononucleares do sangue periférico (PBMCs, do inglês Peripheral Blood Mononuclear Cells), comparamos grupos de indivíduos jovens (n = 20), idosos (n = 17) e centenários (n = 27). Além disso, foi também foi avaliado o comprimento telomérico em amostras de DNA desses indivíduos, buscando uma comparação entre os mesmos. Foi observada uma diminuição no nível de expressão transcricional do gene BLM nos grupos idoso e centenário quando comparados ao grupo jovem (p<0,05). Também foi observado uma diminuição na expressão do gene RECQL5 no grupo idoso comparado ao grupo jovem. Para os genes da via BER, foi observada uma repressão na expressão transcricional de PARP1 no grupo idoso em relação ao grupo jovem (p<0,05). Em relação ao comprimento telomérico, nossos resultados demonstraram associação entre a diminuição do comprimento telomérico e a idade. Obtivemos diferença significativa na comparação do comprimento telomérico de idosos e centenários comparados ao grupo jovem. Porém, não foi observada diferença entre os grupos idosos e centenários. Assim, nossos resultados mostram uma associação do processo de envelhecimento com a modulação de alguns genes da família RecQ helicase e participantes da via BER, e com o encurtamento telomérico. Os resultados gerados nesse trabalho são inéditos, sendo que relevantes para melhor compreensão do processo de envelhecimento. / Genomic instability plays a major role in the aging process due to the accumulation of DNA damage in somatic cells continuously exposed to endogenous and exogenous factors. A group of proteins essential in maintaining genome stability is composed by RecQ helicase, acting in several cell metabolism processes such as DNA replication, recombination, DNA repair and telomere maintenance. Some evidence related the aberrant expression of these proteins to premature aging. In order to determine the transcriptional expression profile of RecQ helicase gene family and some genes involved in the BER (Base excision repair) pathway, such as PARP1, POL and APEX1 in peripheral blood mononuclear cells (PBMCs), we compared groups of young (n = 20), elderly (n = 17) and centenarians (n = 27). Furthermore, it was also evaluated telomere length in DNA samples from these individuals. It was observed a decrease in the transcriptional expression of BLM gene in elderly and centenarians compared to the young group (p <0.05). It was also observed a decrease in expression of RECQL5 gene in the elderly compared to the younger group. For the BER genes, it was observed a transcriptional repression of PARP1 in the elderly group compared to the young group (p <0.05). Regarding the telomere length, our results demonstrated an association between reduction of telomere length and age. We obtained significant difference in comparing the telomere length of the elderly and centenarians compared to the younger group. However, no difference was observed between the elderly and centenarians groups. Thus, our results show an association of aging process with the modulation of certain genes from RecQ helicase family and participants of the BER pathway and the telomere shortening. The results generated in this study are promising, and relevant to better understanding the aging process.
32

Caracterização fenotípica de linhagens mutantes das RNA helicases DEAD-box de Caulobacter crescentus em condições de baixa temperatura. / Phenotypic characterization of mutant lines of DEAD-box RNA helicases from Caulobacter crescentus under low temperature conditions.

Durán, Angel Alfonso Aguirre 20 July 2017 (has links)
As RNA helicases da família DEAD-box são enzimas que alteram as estruturas secundárias do RNA e auxiliam a formação de complexos ribonucleoproteicos, e são muito importantes em processos basais como a degradação dos RNAs e a biogênese dos ribossomos. A &#945;-proteobactéria criotolerante Caulobacter crescentus é um modelo experimental interessante para compreender o papel destas enzimas em baixa temperatura. A caracterização fenotípica de linhagens mutantes simples de quatro RNA helicases DEAD-box permitiu demonstrar que a RNA helicase RhlE é necessária para o crescimento em baixa temperatura. Os mutantes duplos mostraram redução do crescimento à temperatura normal e em baixa temperatura, com perda de viabilidade e alterações morfológicas. Através de ensaios de complementação cruzada mostrou-se que seus papéis fisiológicos são até certo ponto redundantes. O mutante rhlE também apresentou redução na formação de biofilme. A medida da expressão relativa dos genes que codificam as RNA helicases mostrou um aumento na expressão de três destes genes em estresse frio, e a análise dos perfis ribossomais mostrou a possível participação destas três RNA helicases na biogênese do ribossomo. / The RNA helicases of the DEAD-box family are enzymes that modify RNA secondary structures and help the formation of ribonucleoprotein complexes, and are very important in basal processes such as RNA degradation and ribosome biogenesis. The cryotolerant &#945;-proteobacterium Caulobacter crescentus is an interesting experimental model to understand the role of these enzymes at low temperature. The phenotypic characterization of strains with single mutations of four DEAD-box RNA helicases showed that RNA helicase RhlE is required for growth at low temperature. The double mutants showed reduction in growth at both normal and low temperatures, with loss of viability and morphological changes. Through cross-complementation assays it has been shown that their physiological roles are to some extent redundant. The rhlE mutant also showed reduction in biofilm formation. The relative expression of the genes encoding the RNA helicases showed an increase in the expression of three of these genes under cold stress, and the analysis of the ribosomal profiles showed the possible participation of these three RNA helicases in ribosome biogenesis.
33

Comparação dos Perfis Transcricionais de Genes de Reparo e Duplicação do DNA e Medidas de Comprimento Telomérico entre Grupos de Indivíduos Jovens, Idosos e Centenários / Transcriptional Profiles of DNA Replication and Repair Genes and Telomere Length Measurements in Young, Elderly and Centenarians People

João Paulo Lopes da Silva 26 June 2015 (has links)
A instabilidade genômica tem sido implicada como um dos principais fatores relacionados ao processo de envelhecimento. Esta é consequência do acumulo de danos no DNA em células somáticas continuamente expostas a fatores endógenos e exógenos. Um grupo de proteínas que desempenha diversos papéis na manutenção e estabilidade do genoma é formado pelas RecQ helicases, atuando em vários processos do metabolismo celular, tais como replicação do DNA, recombinação, reparo do DNA e manutenção dos telômeros. Algumas evidencias relacionam a expressão aberrante destas proteínas ao envelhecimento precoce. Com o objetivo de determinar os perfis de expressão transcricional de genes da família RecQ helicase e alguns genes envolvidos na via BER (Base excision repair), como PARP1, POL e APEX1 em células mononucleares do sangue periférico (PBMCs, do inglês Peripheral Blood Mononuclear Cells), comparamos grupos de indivíduos jovens (n = 20), idosos (n = 17) e centenários (n = 27). Além disso, foi também foi avaliado o comprimento telomérico em amostras de DNA desses indivíduos, buscando uma comparação entre os mesmos. Foi observada uma diminuição no nível de expressão transcricional do gene BLM nos grupos idoso e centenário quando comparados ao grupo jovem (p<0,05). Também foi observado uma diminuição na expressão do gene RECQL5 no grupo idoso comparado ao grupo jovem. Para os genes da via BER, foi observada uma repressão na expressão transcricional de PARP1 no grupo idoso em relação ao grupo jovem (p<0,05). Em relação ao comprimento telomérico, nossos resultados demonstraram associação entre a diminuição do comprimento telomérico e a idade. Obtivemos diferença significativa na comparação do comprimento telomérico de idosos e centenários comparados ao grupo jovem. Porém, não foi observada diferença entre os grupos idosos e centenários. Assim, nossos resultados mostram uma associação do processo de envelhecimento com a modulação de alguns genes da família RecQ helicase e participantes da via BER, e com o encurtamento telomérico. Os resultados gerados nesse trabalho são inéditos, sendo que relevantes para melhor compreensão do processo de envelhecimento. / Genomic instability plays a major role in the aging process due to the accumulation of DNA damage in somatic cells continuously exposed to endogenous and exogenous factors. A group of proteins essential in maintaining genome stability is composed by RecQ helicase, acting in several cell metabolism processes such as DNA replication, recombination, DNA repair and telomere maintenance. Some evidence related the aberrant expression of these proteins to premature aging. In order to determine the transcriptional expression profile of RecQ helicase gene family and some genes involved in the BER (Base excision repair) pathway, such as PARP1, POL and APEX1 in peripheral blood mononuclear cells (PBMCs), we compared groups of young (n = 20), elderly (n = 17) and centenarians (n = 27). Furthermore, it was also evaluated telomere length in DNA samples from these individuals. It was observed a decrease in the transcriptional expression of BLM gene in elderly and centenarians compared to the young group (p <0.05). It was also observed a decrease in expression of RECQL5 gene in the elderly compared to the younger group. For the BER genes, it was observed a transcriptional repression of PARP1 in the elderly group compared to the young group (p <0.05). Regarding the telomere length, our results demonstrated an association between reduction of telomere length and age. We obtained significant difference in comparing the telomere length of the elderly and centenarians compared to the younger group. However, no difference was observed between the elderly and centenarians groups. Thus, our results show an association of aging process with the modulation of certain genes from RecQ helicase family and participants of the BER pathway and the telomere shortening. The results generated in this study are promising, and relevant to better understanding the aging process.
34

Étude des voies de régulation de la méthylation de l’ADN et du relâchement du silencing après choc thermique chez Arabidopsis thaliana / Study of DNA methylation regulation pathways and release of silencing after heat shock in Arabidopsis thaliana

Auzon-Cape, Maxime 14 December 2017 (has links)
Chez Arabidopsis thaliana, le silencing transcriptionnel est associé notamment aux modifications post-traductionnelles des queues des histones et à la méthylation des cytosines en contexte CG, CHG et CHH (où H peut être indifféremment T, A ou C). Plusieurs voies indépendantes conduisent à la méthylation de l’ADN en tout contexte via les méthyltransférases. A contrario, ROS1, une ADN déméthylase, « élague » les profils de méthylation et prévient ainsi d’une hyperméthylation du génome. Or, de façon intéressante, plusieurs mutants impliqués dans les voies de méthylation de l’ADN voient l’expression du gène ROS1 diminuer, ce qui trahit l’existence d’une boucle de rétrocontrôle négative entre les voies de méthylation et de déméthylation de l’ADN. Nous avons donc réalisé un crible génétique afin d’identifier un régulateur de l’expression de ROS1. Pour cela, nous avons utilisé une lignée pROS1:GUS constituée du gène rapporteur de la glucuronidase sous contrôle du promoteur de ROS1. Dans le fond mutant nrpd1a-4, le gène de ROS1 et de la glucuronidase sont sous-exprimés. Le crible consiste alors à identifier un mutant qui relâche l’expression de la glucuronidase et de ROS1 dans le fond mutant nrpd1a-4. Six mutants présentent une expression de la glucuronidase plus forte que le témoin pROS1:GUS dans le fond nrpd1a-4. Cependant, contrairement à ce qui était attendu, l’expression de ROS1 endogène est plus basse encore que chez pROS1:GUS dans le fond nrpd1a-4.Face à ses résultats, nous avons alors réorienté la thèse vers l’étude d’une voie de contournement du silencing des éléments répétés. En effet, lorsque l’on applique un stress thermique de 37°C durant 24h, l’on observe un relâchement du silencing de ces derniers. Toutefois, aucune modification épigénétique connue ne semble être impliquée. Pour étudier ce phénomène, nous disposons d’une lignée L5 qui, dans des conditions normales de culture, voit son transgène soumis aux mécanismes de silencing. Parce que la construction L5 comprend plusieurs répétitions de la glucuronidase sous contrôle du promoteur 35S, elle est alors assimilée à n’importe quel autre élément répété et, à ce titre, se retrouve être également exprimée après stress thermique. L’équipe a alors réalisé un crible sur cette lignée et a mis en évidence 3-1S, un mutant qui est déficient dans le relâchement du silencing à 37°C. Dans un premier temps, nous avons mis en évidence que le phénotype de 3-1S est dû à une mutation de RH35, une hélicase ARN à boîte DEAD. D’autre part, nos résultats montrent que le gène RH35 est exprimé plus fortement à 37°C et sa protéine présente, en outre, une relocalisation dans ces conditions de stress. RH35 serait, en fait, impliquée de manière plus globale dans le métabolisme des ARN en réponse au stress thermique et jouerait également un rôle dans la réponse au stress thermique et salin. / In Arabidopsis thaliana, transcriptional silencing is associated with histone tail post-translational modifications and cytosine modifications in CG, CHG and CHH contexts (where H can be indifferently T, A or C). Numerous independent pathways lead to DNA methylation in all contexts through méthyltransférases. Conversely, the DNA demethylase ROS1 “prunes” methylation profiles and prevents genome hypermethylation. Interestingly, several mutants which are involved in DNA methylation pathways present a decrease in ROS1 gene expression, what reveals the existence of a negative feedback loop between DNA methylation and demethylation pathways. A genetic screening was carried out in order to find a ROS1 regulator. To do this, pROS1:GUS line, which carries the glucuronidase reporter gene under ROS1 promoter, was used. In the nrpd1a-4 mutant, ROS1 and glucuronidase genes are underexpressed. The screen consisted to find a mutant which release glucuronidase and ROS1 gene expression in nrpd1a-4 mutant background. Six mutants presented a higher expression of the glucuronidase than the pROS1:GUS control in nrpd1a-4 background. However, unlike what it was expected, endogene ROS1 expression is even lower than what we have for pROS1:GUS in nrpd1a-4 background.In view of these results, the thesis was redirected toward the study of the silencing circumvention pathway of the repeated elements. Indeed, when heat stress at 37°C during 24h is applied, a release of silencing is observed for repeated elements. Nevertheless, no known epigenetic modifications seem to be involved. To study this phenomenon, we used a L5 line. Its transgene is silenced in standard conditions. Because L5 construct is composed by several glucuronidase repetitions under 35S promoter, it is considered as any other repeated elements and, for this reason, it is also expressed after heat stress. The team performed a genetic screen on this line and found 3-1S, a mutant which is deficient in the release of silencing at 37°C. On the one hand, we demonstrated that 3-1S phenotype is due to a mutation in RH35 DEAD box RNA helicase. On the other hand, our results revealed that RH35 gene is expressed at 37°C and its protein is relocated in heat stress conditions. In fact, RH35 would be involved more globally in RNA metabolism and would play a role in heat and salt stress.
35

DNA precursor biosynthesis-allosteric regulation and medical applications /

Rofougaran, Reza, January 2008 (has links)
Diss. (sammanfattning) Umeå : Univ., 2008. / Härtill 4 uppsatser.
36

Molecular mechanism of SV40 large tumor antigen helicase /

Tokonzaba, Etienne. January 2007 (has links)
Thesis (Ph.D. in Pharmacology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 82-92; 128-134). Online version available via ProQuest Digital Dissertations.
37

Functional Characterization And Regulation Of UvrD Helicases From Haemophilus Influenzae And Helicobacter Pylori, And Recj Exonuclease Fron Haemophilus Influenzae

Sharma, Ruchika 07 1900 (has links) (PDF)
DNA repair processes are crucial for mutation avoidance and the maintenance of genetic integrity in all organisms. Organisms rely on repair processes to combat genotoxic stress imposed by hostile host environment, and sometimes by therapeutic agents. Most pathogens rapidly generate genetic variability to acquire increased virulence and evade host immune response. Therefore, there needs to exist a fine balance between mutation avoidance and fixation, which is perhaps regulated by repair processes. Haemophilus influenzae and Helicobacter pylori contribute significantly to morbidity and mortality caused by bacteria worldwide. H. influenzae is an obligate commensal of upper respiratory tract with the potential to cause a variety of diseases in humans like meningitis and respiratory infections. H. pylori, which inhabits the human stomach, is associated with gastric and duodenal ulcers and cancerous gastric lesions. One of the striking differences between these two genetically diverse bacterial species is the absence of recognized DNA mismatch repair (MMR) pathway homologs in H. pylori. MMR is a highly conserved post-replicative process, which corrects base pairing mismatches and small loops arising during DNA replication and recombination due to misincorporated nucleotides, insertions, and deletions. Defective MMR results in increased mutation frequency that can alter the pathogenic potential and antibiotic resistance of pathogens. MMR has been extensively studied in Escherichia coli, and requires an orchestrated function of different proteins like MutS, MutL, MutH, UvrD, SSB, RecJ, ExoVII, ExoI, ExoX, beta-clamp, DNA polymerase III and DNA ligase. A growing body of evidence suggests that bacteria other than the well-characterized E. coli paradigm differ in basic DNA repair machinery. MMR proteins involved in mismatch recognition and strand discrimination like MutS, MutL and MutH from H. influenzae have been characterized, but other downstream repair genes like UvrD helicase and exonucleases like RecJ have not been studied functionally in detail. H. pylori harbors a UvrD homolog, which shares limited homology with other UvrD proteins (29% identity with E. coli UvrD and 31 % with H. influenzae UvrD) and its cellular functions are not clear. Moreover, it is not well-understood how the activities of UvrD and RecJ proteins are regulated within these pathogens. It was, therefore, envisaged that biochemical characterization of UvrD and RecJ would lead to a better understanding of the mechanistic aspects of repair processes within these pathogens. The following sections summarize the results presented in this investigation. Functional characterization of UvrD from H. influenzae UvrD or DNA helicase II is a member of superfamily I of DNA helicases with well-documented roles in nucleotide excision repair (NER) and MMR, in addition to roles in replication and recombination. The 727-amino acid H. influenzae Rd KW20 UvrD (HiUvrD) protein was purified as an N-terminal (His)6-tagged protein to near homogeneity, and its authenticity was confirmed by peptide mass fingerprint analysis. HiUvrD displayed robust binding with single-stranded (ss) DNA as compared to double-stranded (ds) DNA. HiUvrD was found exhibit ~ 1000-fold higher affinity for ssDNA as compared to dsDNA as determined by surface plasmon resonance (SPR). In addition, to gain insights into the role of HiUvrD in replication, repair, recombination and transcription, the ability of HiUvrD to bind different DNA structures resembling intermediates of these processes was investigated using electrophoretic mobility shift assays. HiUvrD exhibited relatively high affinities for a number of branched DNA substrates and the order of affinity observed was; splayed-duplex ≥3’-flap ≥ ssDNA > 3’-overhang > four-way junction > three-way junction > nicked duplex > looped duplex ≥ duplex. Concurrent with its high affinity for ssDNA, HiUvrD exhibited a robust ssDNA-specific and Mg2+ - dependent ATPase activity. HiUvrD was able to unwind different DNA structures with varying efficiencies (3’ flap ≥ 3’-overhang > three-way junction > splayed-duplex > four-way junction > nicked > loop = duplex >>> 5’-overhang) and with a 3’-5’ polarity, which underpins its role in replication fork reversal, recombination and different DNA repair pathways. Multiple sequence alignment of HiUvrD with other helicases showed the presence highly conserved helicase motifs of which motif I and II are essential for ATP binding and hydrolysis. Mutation of an invariant glutamate residue (E226Q) in motif II of HiUvrD resulted in a dominant negative growth phenotype since, it was not possible to recover transformants when wild-type E. coli expression strains BL21(DE3)plysS or BL21(DE3)plysE were transformed with expression vector carrying hiuvrDE226Q. Mutation of a conserved arginine residue to alanine (R288A) in motif IV resulted in approximately 80 % reduction in ATP hydrolysis, and abrogation of helicase activity as compared to the wild-type protein. This can be attributed to ~ 70 % reduced ATP binding by HiUvrDR288A as determined by UV-crosslinking of radioactive ATP without change in affinity for ssDNA. HiUvrD was found to exist predominantly as a monomer with small amounts (~ 2-3 %) of higher oligomers like dimers and tetramers in solution. Deletion of 48 amino acid residues from distal C-terminus of HiUvrD resulted in abrogation of the oligomeric species implicating C-terminus to be involved in protein oligomerization. Interplay of UvrD with MutL and MutS in H. influenzae, and its modulation by ATP To investigate the effects of H. influenzae MutS (HiMutS) and MutL (HiMutL) on the helicase activity of HiUvrD, two different nicked DNA substrates were generated- a homoduplex and a heteroduplex DNA with a GT mismatch. HiMutL and HiMutS did not exhibit any helicase activity on either homoduplex or heteroduplex DNA, and unwinding of these substrates was observed only in presence of HiUvrD. In the presence of HiMutL the helicase activity of HiUvrD was stimulated on both homoduplex and heteroduplex nicked substrates whereas no significant modulation of HiUvrD ATPase activity in presence of HiMutL was observed. A much higher stimulation of unwinding of heteroduplex DNA was obtained, in presence of increasing concentrations of HiMutS. With increasing concentrations of HiMutL a progressive increase in HiUvrD mediated unwinding of the radiolabeled DNA strand was observed, which was ~ 15-fold higher than unwinding by HiUvrD alone. To investigate the effect of ATP in the stimulation of HiUvrD by HiMutL, two mutants of HiMutL–E29A (E29 is involved in ATP hydrolysis in E. coli UvrD), and D58A (D58 is essential for ATP binding in E. coli UvrD) were generated. HiMutLE29A retained only ~ 30 % of the wild-type ATPase activity, which was completely abolished in HiMutLD58A. Similar to wild-type protein, HiMutLE29A was able to stimulate HiUvrD helicase activity whereas HiMutLD58A failed to stimulate this activity. This indicated that ATP-bound form of MutL was essential for stimulation and perhaps interaction with UvrD. SPR analysis was carried out to validate and quantitate the direct protein-protein interaction between HiUvrD and HiMutL in absence or in presence of ATP, AMPPNP, and ADP. In the presence of ATP as well as AMPPNP, almost ~ 10,000-fold increase in the affinity between HiMutL and HiUvrD was observed but the same was not the case in presence of ADP. This clearly suggested that ATP binding rather than its hydrolysis promotes the interaction of MutL with UvrD. The effect of HiMutS on MutL-stimulated DNA unwinding by HiUvrD was determined using a heteroduplex nicked DNA with a GT mismatch. Interestingly, in the presence of HiMutS ~ 20-fold activation of DNA unwinding was observed, which is higher than the stimulation by HiMutL alone. The role of ATP-hydrolysis by MutS in regulation of UvrD helicase was studied by replacing wild-type protein with HiMutSE696A in the helicase assays. HiMutSE696A failed to hydrolyze ATP but was able to bind ATP with the same affinity as the wild-type protein and interacted with heteroduplex DNA with ~ 8-fold reduced affinity as compared to wild-type MutS. Intriguingly, increasing concentrations of HiMutSE696A failed to stimulate HiUvrD helicase activity in presence of HiMutL indicating that ATP hydrolysis by HiMutS is essential for stimulation of HiUvrD helicase activity post MutH-nicking during MMR. SSB, an essential component of all DNA metabolism pathways, possibly functions to stabilize the ssDNA tract generated by UvrD and exonucleases during MMR. ATPase and helicase activities of HiUvrD were inhibited by the cognate SSB protein. This inhibition could be overcome by increasing the concentration of HiUvrD helicases thus, pointing out the fact that SSB and UvrD perhaps compete with each other for ssDNA substrate. Noticeably, MutL and MutS proteins could alleviate the inhibition of HiUvrD by HiSSB. Functional characterization of UvrD from H. pylori In H. pylori, UvrD has been reported to limit homologous recombination and DNA-damage induced genomic recombinations but the protein has not been functionally studied. UvrD from H. pylori strain 26695 (HpUvrD) was over-expressed and purified as an N-terminal (His)6-tagged protein, and its authenticity was confirmed by peptide mass fingerprint analysis. HpUvrD exhibited high affinity for ssDNA as compared to dsDNA as determined by electrophoretic mobility shift assays and SPR. In addition, HpUvrD was able to bind a number of branched DNA structures (splayed duplex > ssDNA > 3’-flap > 3’overhang > three-way junction = four-way junction > loop >>> nicked ≥ duplex) suggesting its role in different DNA processing pathways. HpUvrD exhibited a Mg2+ - dependent ssDNA-specific ATPase activity, and a 3’-5’ helicase activity. HpUvrD was able to unwind different branched DNA structures with 3’-ssDNA regions like splayed duplex, 3’-overhang and 3’-flap. Blunt-ended duplex, duplexes with nick and loop as well as three-way and four-way junctions were unwound with less efficiency. Interestingly, the helicase activity of HpUvrD was supported by GTP and dGTP to almost the same level as ATP and dATP, which is in stark contrast to other characterized UvrD proteins. Moreover, HpUvrD was able to hydrolyze GTP albeit with ~ 1.5-fold reduced rate as compared to ATP. However, motifs associated with GTP binding and hydrolysis were not found in HpUvrD and it is possible that GTP binds in the same site as ATP. To investigate this possibility, helicase assay was done in the presence of ATP together with different concentrations of GMP-PNP, which is a non-hydrolysable analog of GTP, and did not support HpUvrD helicase activity. With increasing concentrations of GMP-PNP, a progressive inhibition of DNA unwinding by HpUvrD was observed suggesting that GMP-PNP could compete with ATP for a common binding site within HpUvrD. Replacement of a highly conserved glutamate residue with gluatamine (E206Q) in Walker B motif of HpUvrD resulted in ~17-fold reduced ATPase activity, and abrogation of helicase activity as compared to the wild-type protein. HpUvrDE206Q was able to bind ssDNA and ATP with comparable affinities as the wild-type protein suggesting the role of E206 in ATP hydrolysis. Like HiUvrD, HpUvrD was found to exist predominantly as a monomer in solution together with the presence of small amounts of higher oligomeric species. However, unlike HiUvrD, deletion of distal C-terminal 63 amino acids in HpUvD did not abrogate the oligomeric species suggesting that additional regions of the protein may be involved in protein oligomerization. The ATPase and helicase activities of HpUvrD were inhibited by the cognate SSB protein, and this inhibition could be overcome by increasing HpUvrD concentrations again suggesting that both UvrD and SSB proteins compete for ssDNA substrate. To investigate the role of UvrD in the physiology of H. pylori, a knock-out of hpuvrD was constructed in H. pylori strain 26695 by insertion of chloramphenicol cassette in its open reading frame. The mutant H. pylori strain 26695 obtained after disruption of hpuvrD was extremely slow growing under the normal microaerophilic conditions compared to the wild-type strain. Growth defect of H. pylori strain 26695ΔhpuvrD highlights the importance of UvrD in H. pylori cellular processes and in vitro fitness. Characterization of H. influenzae RecJ and its interaction with SSB Among the four exonucleases involved in MMR pathway, RecJ is the only known nuclease that degrades single-stranded DNA with 5’ to 3’ polarity. RecJ exonuclease plays additional important roles in base-excision repair, repair of stalled replication forks, and recombination. RecJ exonuclease from H. influenzae (HiRecJ) is a 575 amino acid protein, which harbors the characteristic motifs conserved among RecJ homologs. Due to limited solubility of HiRecJ, the protein was purified as a fusion protein with maltose binding protein (MBP). The purified protein exhibited a Mg2+ or Mn2+- dependent, and a highly processive 5’ to 3’ exonuclease activity, which is specific for ssDNA. MBP did not affect the exonuclease activity of HiRecJ. The processivity of HiRecJ was determined as ~ 700 nucleotides per binding event, using a ssDNA substrate labelled internally with 3H and at its 5’-terminus with 32P. Cd2+ inhibited the Mg2+ - dependent exonuclease activity of RecJ, which could not be overcome by increasing Mg2+ concentration. Site-directed mutagenesis of highly conserved residues in HiRecJ- D77A, D156A and H157A abolished the enzymatic activity. Interestingly, HiRecJD77A was found to interact with ssDNA with a 10-fold higher affinity than wild-type protein suggesting that this conserved aspartate residue may function to coordinate the binding of metal ion or DNA to hydrolysis of DNA. E. coli HU protein inhibited the HiRecJ exonuclease activity in a concentration-dependent manner possibly due to sequestration of ssDNA, thus making it unavailable for HiRecJ. During MMR, ssDNA tracts generated by UvrD helicase activity are most probably stabilized by SSB and hence, the in vivo substrate for RecJ would be SSB-ssDNA complex. The exonuclease activity of HiRecJ was stimulated approximately 3-fold by H. influenzae SSB (HiSSB) protein. HiSSB was able to stimulate HiRecJ exonuclease activity on a ssDNA substrate, which formed either a very strong secondary structure or on a homopolymeric ssDNA substrate, which did not form any secondary structure, suggesting that HiRecJ exonuclease was stimulated independent of the ability to HiSSB to melt secondary structures and stabilize ssDNA. Significantly, steady-state-kinetic analysis clearly showed that HiSSB increases the affinity of HiRecJ for ssDNA. H. influenzae SSBΔC and T4 gene 32 protein, a SSB homolog from bacteriophage T4, failed to enhance the HiRecJ exonuclease activity suggesting a specific functional interaction between HiSSB and HiRecJ mediated by C-terminus tail of HiSSB. More importantly, HiRecJ was found to directly associate with its cognate SSB. The C-terminus of HiSSB protein was found to be essential for this interaction. To delineate the regions of HiRecJ that interact with HiSSB, different truncated forms of HiRecJ were generated in which regions external to conserved motifs required for exonuclease activity were deleted. Different deletion mutants of HiRecJ- RecJ∆N34, RecJ∆C76 and the core catalytic domain (which contains amino acid residues 35-498) were purified as fusion proteins with MBP. HiSSB was found to interact with all the truncated forms of HiRecJ suggesting that its core-catalytic domain harbors a site for interaction with SSB. Taken together, the results presented in this study lead to a better understanding of the structure-function relationships of the UvrD helicase and RecJ exonuclease. Importantly, they provide insights into the interplay between various proteins in DNA MMR pathway. Characterization of repair proteins that are involved in multiple genome fidelity pathways is of fundamental importance to understand repair processes, more so in pathogenic bacteria wherein they regulate mutation rates, which can alter the fitness and virulence of the pathogens. Publication Sharma R., and Rao, D.N. (2009). Orchestration of Haemophilus influenzae RecJ exonuclease by interaction with single-stranded DNA-binding protein. J. Mol. Biol., 385, 1375-1396.
38

Checkpoint Regulation of Replication Forks in Response to DNA Damage: A Dissertation

Willis, Nicholas Adrian 21 May 2009 (has links)
Faithful duplication and segregation of undamaged DNA is critical to the survival of all organisms and prevention of oncogenesis in multicellular organisms. To ensure inheritance of intact DNA, cells rely on checkpoints. Checkpoints alter cellular processes in the presence of DNA damage preventing cell cycle transitions until replication is completed or DNA damage is repaired. Several checkpoints are specific to S-phase. The S-M replication checkpoint prevents mitosis in the presence of unreplicated DNA. Rather than outright halting replication, the S-phase DNA damage checkpoint slows replication in response to DNA damage. This checkpoint utilizes two general mechanisms to slow replication. First, this checkpoint prevents origin firing thus limiting the number of replication forks traversing the genome in the presence of damaged DNA. Second, this checkpoint slows the progression of the replication forks. Inhibition of origin firing in response to DNA damage is well established, however when this thesis work began, slowing of replication fork progression was controversial. Fission yeast slow replication in response to DNA damage utilizing an evolutionarily conserved kinase cascade. Slowing requires the checkpoint kinases Rad3 (hATR) and Cds1 (hChk2) as well as additional checkpoint components, the Rad9-Rad1-Hus1 complex and the Mre11-Rad50-Nbs1 (MRN) recombinational repair complex. The exact role MRN serves to slow replication is obscure due to its many roles in DNA metabolism and checkpoint response to damage. However, fission yeast MRN mutants display defects in recombination in yeast and, upon beginning this project, were described in vertebrates to display S-phase DNA damage checkpoint defects independent of origin firing. Due to these observations, I initially hypothesized that recombination was required for replication slowing. However, two observations forced a paradigm shift in how I thought replication slowing to occur and how replication fork metabolism was altered in response to DNA damage. We found rhp51Δ mutants (mutant for the central mitotic recombinase similar to Rad51 and RecA) to slow well. We observed that the RecQ helicase Rqh1, implicated in negatively regulating recombination, was required for slowing. Therefore, deregulated recombination appeared to actually be responsible for slowing failures exhibited by the rqh1Δ recombination regulator mutant. Thereafter, I began a search for additional regulators required for slowing and developed the epistasis grouping described in Chapters II and V. We found a wide variety of mutants which either completely or partially failed to slow replication in response to DNA damage. The three members of the MRN complex, nbs1Δ, rad32Δ and rad50Δ displayed a partial defect in slowing, as did the helicase rqh1Δ and Rhp51-mediator sfr1Δ mutants. We found the mus81Δ and eme1Δ endonuclease complex and the smc6-xhypomorph to completely fail to slow. We were able to identify at least three epistasis groups due to genetic interaction between these mutants and recombinase mutants. Interestingly, not all mutants’ phenotypes were suppressed by abrogation of recombination. As introduced in Chapters II, III and IV checkpoint kinase cds1Δ, mus81Δ endonuclease, and smc6-x mutant slowing defects were not suppressed by abrogation of recombination, while the sfr1Δ, rqh1Δ, rad2Δ and nbs1Δ mutant slowing defects were. Additionally, data shows replication slowing in fission yeast is primarily due to proteins acting locally at sites of DNA damage. We show that replication slowing is lesion density-dependent, prevention of origin firing representing a global response to insult contributes little to slowing, and constitutive checkpoint activation is not sufficient to induce DNA damage-independent slowing. Collectively, our data strongly suggest that slowing of replication in response to DNA damage in fission yeast is due to the slowing of replication forks traversing damaged template. We show slowing must be primarily a local response to checkpoint activation and all mutants found to fail to slow are implicated in replication fork metabolism, and recombination is responsible for some mutant slowing defects.
39

Splitting, joining and cutting : mechanistic studies of enzymes that manipulate DNA

McRobbie, Anne-Marie M. January 2010 (has links)
DNA is a reactive and dynamic molecule that is continually damaged by both exogenous and endogenous agents. Various DNA repair pathways have evolved to ensure the faithful replication of the genome. One such pathway, nucleotide excision repair (NER), involves the concerted action of several proteins to repair helix-distorting lesions that arise following exposure to UV light. Mutation of NER proteins is associated with several genetic diseases, including xeroderma pigmentosum that can arise upon mutation of the DNA helicase, XPD. The consequences of introducing human mutations into the gene encoding XPD from Sulfolobus acidocaldarius (SacXPD) were investigated to shed light on the molecular basis of XPD-related diseases. XPD is a 5’-3’ DNA helicase that requires an iron-sulphur (FeS) cluster for activity (Rudolf et al., 2006). Several proteins related to SacXPD, including human XPD, human FancJ and E. coli DinG, also rely on an FeS cluster for DNA unwinding (Rudolf et al., 2006; Pugh et al., 2008; Ren et al., 2009). Sequence analysis of the homologous protein, DinG, from Staphylococcus aureus (SarDinG) suggests that this protein does not encode a FeS cluster. In addition, SarDinG comprises an N-terminal extension with homology to the epsilon domain of polymerase III from E. coli. This thesis describes the purification and characterisation of SarDinG. During replication, DNA lesions or other ‘roadblocks’, such as DNA-bound proteins, can lead to replication fork stalling or collapse. To maintain genomic integrity, the fork must be restored and replication restarted. In archaea, the DNA helicase Hel308 is thought to play a role in this process by removing the lagging strands of stalled forks, thereby promoting fork repair by homologous recombination. Potential roles of Hel308 during replication fork repair are discussed in this thesis. The mechanism by which Hel308 moves along and unwinds DNA was also investigated using a combined structural and biophysical approach. The exchange of DNA between homologous strands, catalysed by a RecA family protein (RecA in bacteria, RAD51 in eukaryotes, and RadA in archaea), defines homologous recombination. While bacteria encode a single RecA protein, both eukaryotes and archaea encode multiple paralogues that have implications in the regulation of RAD51 and RadA activity, respectively. This thesis describes the purification and characterisation of one of the RadA paralogues (Sso2452) in archaea.
40

Characterizing the Role of the DEAD-box Protein Dbp2 in RNA Structure Remodeling and Pre-mRNA Processing

Yu-Hsuan Lai (5929919) 10 June 2019 (has links)
RNA helicases are found in all kingdoms of life, functioning in all aspects of RNA biology mainly through modulating structures of RNA and ribonucleoprotein (RNP) complex. RNA structures have fundamental impacts on steps in gene expression, including transcription, pre-mRNA processing, and translation. However, the precise roles and regulatory mechanisms of RNA structures in co- and post-transcriptional processes remain elusive. By probing genome-wide RNA structures in vivo, a recent study suggested that ATP-dependent factors, such as RNA helicases, maintain the actively unfolded state of RNAs. Among all RNA helicases, DEAD-box proteins form the largest family in eukaryotes, and have been shown to remodel RNA/RNP structures both in vitro and in vivo. Nevertheless, for the majority of these enzymes, it is largely unclear what RNAs are targeted and where they modulate RNA/RNP structures to regulate co-transcriptional processes. To fill the gap, my research focused on identification of the RNAs and structures targeted by the DEAD-box protein Dbp2 in S. cerevisiae to uncover the cellular processes that Dbp2 is involved in.<br><div><div>My studies revealed a role of Dbp2 in transcriptional termination. Dbp2 binds to ~34% of yeast mRNAs and all snoRNAs, and loss of DBP2 leads to a termination defect as evidenced by RNA polymerase II (RNAPII) accumulation at 3’ ends of these genes. In addition, the binding pattern of Dbp2 in mRNAs is highly similar to Nrd1 and Nab3 in the Nrd1-Nab3-Sen1 (NNS) termination complex, and deletion of DBP2 leads to reduced recruitment of Nrd1 to its target genomic loci. In Dbp2 and NNS targeted 3’ UTRs, RNA structural changes resulted from DBP2 deletion also overlap polyadenylation elements and correlate with inefficient termination, and loss of stable structure in the 3’ UTR bypasses the requirement for Dbp2. These findings lead to a model that Dbp2 promotes efficient termination of transcription through RNA structure remodeling.</div><div>Interestingly, my research also revealed the requirement of DBP2 for efficient splicing, as loss of DBP2 leads to accumulation of unspliced pre-mRNAs. Moreover, this function is dependent on the helicase activity of Dbp2. Further studies are needed to characterize the molecular mechanism of how Dbp2 facilitates splicing in cells. Overall, my research demonstrated that DEAD-box RNA helicases remodel mRNA structure in vivo and that structural alteration can be essential for proper gene expression.</div></div>

Page generated in 0.061 seconds