Spelling suggestions: "subject:"helicopter design""
11 |
HESCAD - an interface between HESCOMP and CADAM for the generation of helicopter modelsLu, Liang-Ju January 1985 (has links)
3-D Interactive CADAM allows for easier construction, modification, analysis, and display of 3-D geometry surfaces and wire-frames. This research forms a basis for preliminary aircraft geometric design using the CADAM system.
The helicopter design program, HESCOMP, originally a batch mode program, was coupled with CADAM via the CADAM data base such that the analysis, design, and redesign of the helicopter geometry and interior equipment geometry can be accomplished interactively. HESCAD, a program which produces the helicopter preliminary design model and enables the interior equipment design process, is developed. It provides a capability to evolve rapidly and refine helicopter configurations generated automatically using output from HESCOMP or interior equipment design by graphically and numerically defining helicopter components through interactive, on line, computer graphic display devices. Helicopter 3-D wireframes are automatically produced for any HESCOMP helicopter geometry output. A method which directs CADAM to analyze the helicopter components and produce weights, centers of gravity, moments and products of inertia and to review the results of the analyses directly on the screen is provided.
This research was sponsored by IBM Corporation Federal Systems Division under contract No. 417503-DE.
This thesis describes and illustrates the HESCAD program. Detailed graphical results are also presented. / Master of Science / incomplete_metadata
|
12 |
Design, testing and demonstration of a small unmanned aircraft system (SUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layerRiddell, Kevin Donald Alexander 13 May 2014 (has links)
The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth’s surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite-based, ground- based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof-of-concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research, but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground- based sensors. Results from both proof-of-concept projects suggest that ABL research could benefit from the proposed techniques.
|
13 |
A plm implementation for aerospace systems engineering-conceptual rotorcraft designHart, Peter Bartholomew 08 April 2009 (has links)
The thesis will discuss the Systems Engineering phase of an original Conceptual Design Engineering Methodology for Aerospace Engineering-Vehicle Synthesis. This iterative phase is shown to benefit from digitization of Integrated Product&Process Design (IPPD) activities, through the application of Product Lifecycle Management (PLM) technologies. Requirements analysis through the use of Quality Function Deployment (QFD) and 7 MaP tools is explored as an illustration. A "Requirements Data Manager" (RDM) is used to show the ability to reduce the time and cost to design for both new and legacy/derivative designs. Here the COTS tool Teamcenter Systems Engineering (TCSE) is used as the RDM. The utility of the new methodology is explored through consideration of a legacy RFP based vehicle design proposal and associated aerospace engineering. The 2001 American Helicopter Society (AHS) 18th Student Design Competition RFP is considered as a starting point for the Systems Engineering phase. A Conceptual Design Engineering activity was conducted in 2000/2001 by Graduate students (including the author) in Rotorcraft Engineering at the Daniel Guggenheim School of Aerospace Engineering at the Georgia Institute of Technology, Atlanta GA. This resulted in the "Kingfisher" vehicle design, an advanced search and rescue rotorcraft capable of performing the "Perfect Storm" mission, from the movie of the same name. The associated requirements, architectures, and work breakdown structure data sets for the Kingfisher are used to relate the capabilities of the proposed Integrated Digital Environment (IDE). The IDE is discussed as a repository for legacy knowledge capture, management, and design template creation. A primary thesis theme is to promote the automation of the up-front conceptual definition of complex systems, specifically aerospace vehicles, while anticipating downstream preliminary and full spectrum lifecycle design activities. The thesis forms a basis for additional discussions of PLM tool integration across the engineering, manufacturing, MRO and EOL lifecycle phases to support business management processes.
|
Page generated in 0.1144 seconds