• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 2
  • Tagged with
  • 27
  • 22
  • 22
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 18
  • 18
  • 18
  • 8
  • 7
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Caractérisation de la migration du virus Herpès simplex de type 1 (HSV-1) par protéomique

Loret, Sandra 02 1900 (has links)
Le virus Herpès simplex de type 1 (HSV-1), agent étiologique des feux sauvages, possède une structure multicouche comprenant une capside icosaédrale qui protège le génome viral d’ADN, une couche protéique très structurée appelée tégument et une enveloppe lipidique dérivant de la cellule hôte et parsemée de glycoprotéines virales. Tous ces constituants sont acquis séquentiellement à partir du noyau, du cytoplasme et du réseau trans-golgien. Cette structure multicouche confère à HSV-1 un potentiel considérable pour incorporer des protéines virales et cellulaires. Toutefois, l’ensemble des protéines qui composent ce virus n’a pas encore été élucidé. De plus, malgré son rôle critique à différentes étapes de l’infection, le tégument demeure encore mal défini et ce, tant dans sa composition que dans la séquence d’addition des protéines qui le composent. Toutes ces incertitudes quant aux mécanismes impliqués dans la morphogenèse du virus nous amènent à l’objectif de ce projet, soit la caractérisation du processus de maturation d’HSV-1. Le premier article présenté dans cette thèse et publié dans Journal of Virology s’attarde à la caractérisation protéique des virus extracellulaires matures. Grâce à l’élaboration d’un protocole d’isolation et de purification de ces virions, une étude protéomique a pu être effectuée. Celle-ci nous a permis de réaliser une cartographie de la composition globale en protéines virales des virus matures (8 protéines de la capside, 23 protéines du tégument et 13 glycoprotéines) qui a fait la page couverture de Journal of Virology. De plus, l’incorporation potentielle de 49 protéines cellulaires différentes a été révélée. Lors de cette étude protéomique, nous avons aussi relevé la présence de nouveaux composants du virion dont UL7, UL23, ICP0 et ICP4. Le deuxième article publié dans Journal of General Virology focalise sur ces protéines via une analyse biochimique afin de mieux comprendre les interactions et la dynamique du tégument. Ces résultats nous révèlent que, contrairement aux protéines ICP0 et ICP4, UL7 et UL23 peuvent être relâchées de la capside en présence de sels et que les cystéines libres jouent un rôle dans cette relâche. De plus, cet article met en évidence la présence d’ICP0 et d’ICP4 sur les capsides nucléaires suggérant une acquisition possible du tégument au noyau. La complexité du processus de morphogenèse du virus ainsi que la mise en évidence d’acquisition de protéines du tégument au noyau nous ont incités à poursuivre nos recherches sur la composition du virus à un stade précoce de son cycle viral. Les capsides C matures, prémisses des virus extracellulaires, ont donc été isolées et purifiées grâce à un protocole innovateur basé sur le tri par cytométrie en flux. L’analyse préliminaire de ces capsides par protéomique a permis d’identifier 28 protéines virales et 39 protéines cellulaires. Les données recueilles, comparées à celles obtenues avec les virus extracellulaires, suggèrent clairement un processus séquentiel d’acquisition des protéines du tégument débutant dans le noyau, site d’assemblage des capsides. Finalement, tous ces résultats contribuent à une meilleure compréhension du processus complexe de maturation d’HSV-1 via l’utilisation de techniques variées et innovatrices, telles que la protéomique et la cytométrie en flux, pouvant être appliquées à d’autres virus mais aussi permettre le développement de meilleurs traitements pour vaincre l’HSV-1. / Herpes simplex virus type 1 (HSV-1), the etiological agent of cold sores, has a multilayered structure that includes an icosahedral capsid that protects the viral DNA genome, a highly structured proteinaceous layer called tegument and a host-derived lipid envelope studded with viral glycoproteins. All these constituents are sequentially acquired from the nucleus, the cytoplasm and the trans-Golgi network. This multilayered structure confers to HSV-1 a considerable potential to incorporate viral and cellular proteins; however, all the proteins that compose this virus have not yet been elucidated. Moreover, despite its critical role at different stages of infection, the tegument is still poorly defined both in its composition and its sequence of addition of proteins. All these uncertainties about the mechanisms involved in the morphogenesis of the virus lead us to the goal of this project, which is the characterization of the maturation process of HSV-1. The first article presented in this thesis and published in Journal of Virology focuses on the protein characterization of extracellular mature virus. After developing a protocol for the isolation and purification of these virions, a proteomics study was performed. It allowed us to map the global viral protein composition of mature virions (8 capsid proteins, 23 tegument proteins and 13 glycoproteins), which made the cover page of Journal of Virology. Moreover, the potential incorporation of 49 cellular proteins was revealed. During this proteomics study, we confirmed the incorporation of novel virion components including UL7, UL23, ICP0 and ICP4. The second article published in Journal of General Virology focuses on these viral proteins by using a biochemical analysis to better understand the interactions and dynamic of the tegument. Our results revealed that, unlike ICP0 and ICP4 proteins, UL7 and UL23 can be released from the capsid in the presence of salts and that free cysteines play a role in this release. Moreover, this article highlights the presence of ICP0 and ICP4 on the nuclear capsids suggesting a potential acquisition of tegument proteins in the nucleus. The complexity of the viral morphogenesis process and the discovery of the tegument acquisition in the nucleus led us to pursue our research on the virus composition at an early stage of its viral cycle. The nuclear C capsids, precursors to the extracellular virus, were isolated and purified with an innovative protocol based on fluorescence activated cell sorting (FACS). The preliminary analysis of these capsids by proteomics allows us to identify 28 viral proteins and 39 cellular proteins. The collected data, compared to those obtained with extracellular viruses, clearly suggest a sequential process of tegument proteins acquisition starting in the nucleus, the assembly site of HSV-1 capsids. Finally, all these results contribute to a better understanding of the complex process of HSV-1 maturation by using varied and innovative techniques such as proteomic and FACS, which can be applied to other viruses and allow the development of better treatments to fight HSV-1.
22

L’étude de la glycoprotéine gM du virus Herpès simplex de type 1 (HSV-l) : identification de ses partenaires viraux et cellulaires et leur rôle dans la régulation de l’infection virale

El Kasmi, Imane 04 1900 (has links)
No description available.
23

Impact of viral and cellular factors on the nuclear egress of human herpes simplex virus Type-1 (HSV-1) capsids

Khadivjam, Bita 08 1900 (has links)
Le virus de l'herpès simplex de type 1 (VHS-1) est l'un des agents pathogènes humains les plus anciens et les plus efficaces. On estime que 3.7 milliards de personnes dans le monde vivent avec le VHS-1. Le virus persiste à l'état latent dans les neurones sensoriels, réapparaissant occasionnellement sous la forme d'une infection lytique qui endommage l'épithélium. Même si le VHS-1 provoque une maladie bénigne connue sous le nom de feu sauvage dans la majorité des cas, l'infection peut entraîner des conséquences catastrophiques telles que l'encéphalite et la kératite chez les personnes immunodéprimées les nouveau-nés. Compte tenu de la présence généralisée des infections à VHS-1, le virus représente une menace potentielle pour le système de santé. Le génome à ADN du VHS-1 est protégé par une cage protéique appelée capside. Bien que l'assemblage de la capside du VHS-1 et l'encapsidation du génome aient lieu à l'intérieur du noyau de l'hôte, les étapes finales de la maturation doivent être achevées dans le cytoplasme. Ainsi, pour la sortie du noyau, le virus a développé un mécanisme connu sous le nom d’enveloppement-déenveloppement-réenveloppement. La première étape de ce processus est principalement régulée par le complexe de sortie nucléaire (pUL31 et pUL34) et entraîne le bourgeonnement de la capside alors enveloppée dans l'espace périnucléaire. Par la suite, le déenveloppement de ces capsides périnucléaires et leur libération dans le cytoplasme seraient largement modulés par la kinase virale pUs3. Ce processus est sélectif, car les capsides remplies d'ADN (capsides C) sortent préférentiellement du noyau au détriment des intermédiaires viraux sans génome (capsides A et B). Cependant, nous ne savons pas pourquoi les capsides C sont favorisées lors de ce processus. En aval, le virus mûrit, recrute de nombreuses protéines puis acquiert une enveloppe à partir d'un compartiment cytoplasmique. Il sort ensuite de la cellule sous forme de virions enveloppés matures. Outre les facteurs viraux mentionnés et quelques protéines hôtes, l'implication de nombreuses autres protéines virales et cellulaires dans cette voie n'a pas été entièrement caractérisée. Pour élucider davantage ce processus de sélection de la capside C, nous avons profité de l'analyse MS/MS des capsides nucléaires du VHS-1 pour définir les facteurs hôtes et viraux spécifiques à chaque intermédiaire de capside nucléaire (Chapitre 2; Article 1). Nous avons trouvé deux protéines virales (pUL42 et pUL46) et sept facteurs de l'hôte (glycogène synthase, quatre protéines différentes liées à la kératine, fibronectine 1 et PCBP1) qui étaient spécifiques des capsides C matures. Fait intéressant, toutes ces protéines semblent posséder des fonctions qui ont le potentiel de médier la sortie nucléaire préférentielle des capsides C. Par conséquent, l'analyse fonctionnelle future de ces protéines pourrait nous fournir des informations inestimables sur la sortie nucléaire actuellement énigmatique des capsides du VHS-1. Les travaux en cours d'un collègue de laboratoire avec lequel je collabore impliquent PCBP1 en tant que modulateur de la sortie nucléaire (mémoire de Mackenzie Thornbury). Nous nous sommes ensuite concentrés sur un ensemble de données protéomiques déjà existantes des virions extracellulaires matures, qui a identifié jusqu'à 49 protéines hôtes incorporées dans le virus, y compris une hélicase à ARN humaine appelée DDX3X qui s'est avérée être un modulateur actif de la propagation virale (Chapitre 2; Article 2). Nous avons remarqué que cette protéine se déplace vers le noyau tard lors de l'infection, coïncidant avec la majeure partie de la sortie nucléaire virale. Par conséquent, nous avons émis l'hypothèse que DDX3X serait impliqué dans la sortie nucléaire virale. Nous avons découvert que, tardivement au cours de l'infection, pUL31 interagit avec DDX3X au niveau du noyau. Nous avons également constaté que DDX3X stimule de grandes agrégations de capsides virales matures dans la périphérie nucléaire. Fait intéressant, la redirection de DDX3X vers le bord nucléaire dépend de la présence de la machinerie de sortie nucléaire virale (pUL31, pUL34 et pUs3) et de capsides matures. Enfin, nos données ont montré qu'en l'absence de DDX3X, les capsides C s'accumulent entre les deux membranes nucléaires, probablement à la suite d'une incorporation inefficace de pUs3 au site de sortie. Ces résultats ont élucidé une nouvelle fonction de DDX3X et pourraient ouvrir de nouvelles voies passionnantes de recherche pour développement d’antiviraux en ciblant cette hélicase à ARN cellulaire. / Herpes simplex virus type 1 (HSV-1) is one of the oldest and most successful human pathogens. It is estimated that 3.7 billion people worldwide are living with HSV-1. The virus latently persists in sensory neurons, occasionally recurring as a lytic infection which damages the connected epithelium. Even though HSV-1 causes a mild disease known as the cold sore in majority of cases, the infection can have catastrophic consequences such as encephalitis and keratitis in immunocompromised individuals, newborns and, more rarely, in immune competent adults. Considering the widespread presence of HSV-1 infections, the virus poses a potential threat to the healthcare system. The DNA genome of HSV-1 is protected by a protein cage called a capsid. Although HSV-1 capsid assembly and genome packaging take place inside the host nucleus, the final steps of maturation must be completed inside the cytoplasm. Since the large diameter of these viral capsids (~125 nm) far exceeds the 30 nm cut-off of the nuclear pore complex, the virus has evolved a mechanism known as envelopment-deenvelopmentreenvelopment. The first step of this complex process is mainly regulated by the components of the nuclear egress complex (pUL31 and pUL34) and results in the budding of enveloped capsid into the perinuclear space. Subsequently, deenvelopment of these perinuclear capsids and their release into the cytoplasm is thought to be largely modulated by the viral kinase pUs3. This process is selective as DNA-filled capsids (C-capsids) preferentially exit the nucleus compared to genome-free viral intermediates (A- and Bcapsids). However, it is unclear how C-capsids are preferentially selected for the nuclear egress. Further downstream, the virus matures and recruit numerous proteins onto the viral capsids and acquire an envelope from a cytoplasmic compartment. It then exits the cell as mature enveloped virions. Apart from the mentioned viral factors and a handful of host proteins, implication of many other viral and cellular proteins in this pathway have not been fully characterized. To further resolve this process of C-capsid selection, we took advantage of MS/MS analysis of HSV-1 nuclear capsids to define host and viral factors specific to each nuclear capsid intermediate (Chapter 2; Article 1). We found two viral proteins (pUL42 and pUL46) and seven host factors (glycogen synthase, four different keratin-related proteins, fibronectin 1, and PCBP1) that were specific to mature C-capsids. Interestingly, all these proteins seem to possess functions that have the potential to mediate the preferential nuclear exit of C-capsids. Therefore, future functional analysis of these proteins might provide us with invaluable insights into the currently enigmatic nuclear egress of HSV-1 capsids. Ongoing work by a lab colleague with which I collaborate implicates PCBP1 as a modulator of nuclear egress (memoir of Mackenzie Thornbury). We then focused on an existing proteomics data set of mature extracellular virions, which revealed 49 virus-incorporated host proteins, including a human RNA helicase called DDX3X that we found to be an active modulator of viral propagation (Chapter 2; Article 2). We observed that DDX3X relocates to the nuclear rim late during infection, coinciding with the bulk of viral nuclear egress, and leading us to hypothesize that DDX3X is involved in the process. We discovered that, late during the infection, pUL31 interacts with DDX3X at the nuclear rim. We also found that DDX3X stimulates large aggregations of mature viral capsids in the nuclear periphery. Unexpectedly, redirection of DDX3X to the nuclear rim was dependent on the presence of the viral nuclear egress machinery (pUL31, pUL34 and pUs3) and mature capsids. Lastly, our data showed that in the absence of DDX3X, C-capsids accumulate in the perinuclear space, likely as the result of inefficient incorporation of pUs3 to the site of egress. These results have elucidated a novel function for DDX3X and may open new and exciting paths to produce antivirals by targeting this cellular RNA helicase.
24

Caractérisation morphologique des agrégats mycéliens en fermentations. Application à deux souches de basidiomycètes produisant des métabolites à activités pharmacologiques

Durant, Gilles 14 November 1994 (has links) (PDF)
Cette étude a porté sur les propriétés culturales et les potentialités métaboliques de deux souches de Basidiomycètes : <i>Macrocystidia cucumis</i> (Agaricales) et <i>Fomes fomentarius</i> (Aphyllophorales). D'une part, sur des surnageants de culture de <i>Macrocystidia cucumis</i>, un agent inhibant,<i> in vitro</i>, le développement du virus Herpès Simplex type 1 a été détecté. La production ou la stabilité du ou des métabolite(s) antiviraux s'est cependant révélée trop erratique pour permettre une caractérisation du composé actif. D'autre part, des fractions polysaccharidiques, isolées de cultures de <i>Fomes fomentarius</i> ont montré <i>in vitro</i>, une forte inhibition de la réaction proliférative des lymphocytes du sang périphérique, stimulés par la concanavaline A ou par des cellules présentatrices allogéniques. Les fractions actives ont été caractérisées et sont composées d'hétéroglucanes (glucose, mannose, galactose) associés à une fraction peptidique (54%). Les résultats actuels ne permettent pas de préciser le rôle de la fraction peptidique dans l'activité. De façon à définir les relations entre propriétés culturales, activités métaboliques et morphologie mycélienne, une première méthode d'analyse d'images a été développée afin d'autoriser, en routine, des mesures et une classification morphologique de la biomasse obtenue lors des fermentations. La méthode repose sur un procédé de coloration permettant une différenciation rapide des zones mycéliennes en fonction de leur accessibilité au milieu. L'influence des conditions d'aération et d'agitation sur la croissance de <i>Macrocystidia cucumis</i> et les conditions préférentielles pour la production des polysaccharides par <i>Fomes fomentarius</i> ont pu être définies à partir des paramètres morphologiques. Une seconde technique de coloration a ensuite été proposée pour suivre par analyses d'images la progression d'un front de diffusion au sein des pellets et fournir ainsi une évaluation de la densité de l'enchevêtrement mycélien en fonction de la vitesse du processus diffusionnel. Le critère diffusionnel défini par ces deux méthodes d'analyses d'images constitue une nouvelle alternative pour la caractérisation morphologique des pellets et agrégats mycéliens. Ses perspectives en terme de connaissance et de modélisation de la croissance de telles biomasses apparaissent particulièrement importantes pour les fermentations fongiques industrielles.
25

Rôle des corps nucléaires PML et des chaperons de l’histone H3.3 dans la chromatinisation du génome du virus Herpès Simplex 1 pendant la latence / Role of PML Nuclear Bodies and H3.3 chaperones in Herpes Simplex Virus 1 genomes chromatinization during latency

Cohen, Camille 20 October 2017 (has links)
L'établissement de latence du virus de l'Herpès simplex 1 (HSV1) est contrôlé par les corps nucléaires PML (PML-NBs) mais leur implication exacte reste encore confuse. Une des caractéristiques majeures de la latence du virus est l'interaction entre le génome viral et les PML-NBs formant des structures nommées viral DNA-containing PML-NBs (vDCP-NBs). L'utilisation d'un modèle d'infection de fibroblastes primaires humains, qui reproduit la formation des vDCP-NBs, combinée à une approche par immuno-FISH, a permis de montrer que les vDCP-NBs contiennent l'histone H3.3 et ses chaperons, les complexes DAXX-ATRX et HIRA. La protéine HIRA a été également observé au sein des vDCP-NBs dans les neurones des ganglions trijumeaux de souris infectées par HSV1. Des expériences de ChIP-qPCR dans des cellules exprimant H3.3 ou H3.1 tagguées, nous a permis de déterminer que le génome viral est spécifiquement chromatinisé avec l'histone H3.3. La déplétion d'une seule protéine des complexes chaperons de H3.3 affecte légèrement l'incorporation de H3.3 dans les génomes viraux latents. Au contraire, l'absence de PML diminue significativement la chromatinisation H3.3 du génome HSV-1 latent sans remplacement par H3.1. Cette étude démontre une régulation épigénétique du génomes HSV1 latent par une chromatinisation dépendante de H3.3 impliquant les complexes chaperons DAXX-ATRX et HIRA. De plus, cette étude révèle un rôle majeur des PML-NBs dans la chromatinisation H3.3 des génomes HSV1 latent / Herpes simplex virus 1 (HSV-1) latency establishment is tightly controlled by PML nuclear bodies (PML-NBs) although their exact implication is still elusive. A hallmark of HSV-1 latency is the interaction between latent viral genomes and PML-NBs leading to the formation of viral DNA-containing PML-NBs (vDCP-NBs). Using a replication defective HSV-1 infected human primary fibroblast model reproducing the formation of vDCP-NBs, combined with an IF-FISH approach developed to detect latent HSV-1, we show that vDCP-NBs contain both histone H3.3 and its chaperone complexes, i.e. the DAXX/ATRX and the HIRA complex. HIRA was also detected co-localizing with vDCP-NBs present in trigeminal ganglia neurons from HSV-1 infected WT mice. ChIP-qPCR performed on fibroblasts stably expressing tagged H3.3 or H3.1 show that latent HSV1 genomes are chromatinized almost exclusively with H3.3. Depletion of single proteins from the H3.3 chaperone complexes only mildly affects H3.3 deposition on the latent HSV1 genome. In contrast, absence of PML significantly impacts on the chromatinization of the latent genomes with H3.3 without replacement with H3.1. Consequently, the study demonstrates a specific epigenetic regulation of latent HSV-1 through an H3.3-dependent HSV-1 chromatinization involving both H3.3 chaperones DAXX/ATRX and HIRA complexes. Additionally, the study reveals that PML-NBs are major actors of the latent HSV-1 H3.3 chromatinization through a PML-NBs/histone H3.3/H3.3 chaperones axis
26

Identification des partenaires de gM du virus VHS-1 par BioID couplée à la spectrométrie de masse

Boruchowicz, Hugo 08 1900 (has links)
No description available.
27

Association entre l'utilisation de la prophylaxie antivirale et la virémie du cytomégalovirus et du virus Epstein-Barr chez les receveurs pédiatriques d'une greffe de cellules souches hématopoïétiques allogéniques

Diop, Ndeye Soukeyna 08 1900 (has links)
Les infections virales en particulier celles dues aux virus de la famille des Herpesviridae pendant la période d’aplasie et de lymphopénie à la suite d’une greffe de cellules souches hématopoïétiques (GCSH) peuvent occasionner des complications très graves, souvent associées à une morbidité et mortalité élevées. Les recommandations cliniques actuelles préconisent l’utilisation des antiviraux pour la prévention de certaines de ces infections. L’efficacité du famciclovir et de l’acyclovir contre les virus de l’herpès simplex (HSV), le virus varicella-zoster (VZV) et l’herpésvirus humain de type 6 (HHV-6) est bien reconnue, cependant il nous manque des données quant à leur effet contre le virus Epstein-Barr (EBV) et le cytomégalovirus (CMV) dans la population pédiatrique. L’objectif principal de ce projet de maitrise a été de mesurer l’incidence de l’infection aux virus HSV, VZV, EBV, CMV et HHV-6 et de mesurer l’association entre l’utilisation de la prophylaxie antivirale (acyclovir et famciclovir) et l’infection (virémie asymptomatique et maladie) avec le CMV et l’EBV dans une cohorte pédiatrique de GCSH allogéniques. Les données d'une cohorte de sujets ayant subis pour la première fois une GCSH enrôlés dans quatre centres de greffes pédiatriques au Canada entre juillet 2013 et mars 2017 (Étude TREASuRE) ont été utilisées. Le recrutement a été effectué au : CHU Sainte-Justine (Montréal) (n=86), British Columbia Children’s Hospital (Vancouver) (n=31), Winnipeg Children's Hospital and CancerCare Manitoba (n=28) et Alberta Children’s Hospital (n=11). Le suivi des patients avait débuté 1 mois avant la greffe et avait duré 13 mois. L’âge médian des patients au recrutement était de 6,3 ans. Les courbes de Kaplan-Meier ont permis d’estimer l'incidence cumulée des infections CMV et EBV avec intervalle de confiance (IC) à 95% à 100 jours post-greffe en fonction de la prophylaxie antivirale (acyclovir ou famciclovir). Les modèles multivariés de régression de Cox à risques proportionnels ont permis de mesurer l'association entre la prise d’antiviraux (acyclovir ou famciclovir) et le développement de ces infections. L’étude a inclus 156 sujets âgés de 0 à 21 ans. Les incidences cumulées de la virémie des virus de HSV, VZV, EBV, CMV et HHV-6 à 100 jours de suivi ont été respectivement de 2.5% (IC 95% : 0.8–7.6), 0.8% (IC 95% : 0.1–6.1), 34.5% (IC 95% : 27.6–42.6), 19.9% (IC 95% : 14.5-27.1) et 3.4% (IC 95% : 1.2–9.1). Les incidences cumulées pour CMV et EBV n’ont pas montré de différence statistiquement significative entre les groupes ayant reçu la prophylaxie antivirale (acyclovir ou famciclovir) et ceux qui ne l’ont pas reçu. Les analyses de Cox n’ont montré aucun effet significatif des antiviraux sur le CMV avec un HR ajusté de 0.55 (IC 95% : 0.24–1.26) pour l’acyclovir et de 0.82 (IC 95% : 0.30–2.29) pour le famciclovir. Il en était de même pour l’EBV avec un HR ajusté de 1.41 (IC 95% : 0.63–3.14) pour l’acyclovir et de 0.79 (IC 95% : 0.36–1.72) pour le famciclovir. Notre étude n’a montré aucune preuve d’effet de la prophylaxie antivirale avec le famciclovir et l’acyclovir contre l’EBV et le CMV. Très peu de cas de HSV et de VZV ont été diagnostiqués dans cette cohorte ce qui est conforme avec l’idée selon laquelle l’acyclovir et le famciclovir sont efficaces pour ces virus. / Viral infections, especially those involving members of the Herpesviridae during the period of aplasia and lymphopenia following allogeneic hematopoietic stem cell transplantation (HSCT), cause very serious complications, often associated with high morbidity and mortality. Current clinical guidelines recommend prophylactic use of antivirals, which has proven to be effective against certain viruses. The efficacy of famciclovir and acyclovir against herpes simplex viruses (HSV), varicella zoster virus (VZV) and human herpesvirus type 6 (HHV-6) is well-recognized, however, we lack data on their effects against Epstein-Barr virus (EBV) and cytomegalovirus (CMV) in the pediatric population. The main objective of this master's project was to measure the incidence of herpes virus infection, specifically by HSV, VZV, EBV, CMV and HHV-6, and to measure the association between the use of antiviral prophylaxis (acyclovir and famciclovir) and infection (including both asymptomatic viremia and disease) by CMV and EBV in a pediatric cohort of allogeneic HSCT. We used data from the TREASuRE cohort, which includes patients enrolled for a first allogeneic HSCT in four pediatric centers in Canada between July 2013 and March 2017. Recruitment was carried out at: CHU Sainte-Justine (Montreal) (n = 86), British Columbia Children's Hospital (Vancouver) (n = 31), Winnipeg Children's Hospital and CancerCare Manitoba (n = 28) and Alberta Children's Hospital (n = 11). Patient follow-up began 1 month before transplant and lasted 13 months. Median patient age at recruitment was 6.3 years. Kaplan-Meier curves were used to estimate the cumulative incidence of CMV and EBV infections with 95% confidence interval (CI) at 100 days post-transplant according to antiviral prophylaxis (acyclovir or famciclovir). Multivariate proportional hazards Cox regression models were used to measure the association between antiviral use (acyclovir or famciclovir) and the detection of these infections. The study included 156 subjects aged 0 to 21 years. The cumulative incidences of viremia due to HSV, VZV, EBV, CMV and HHV-6 at day 100 of follow-up were respectively 2.5% (CI 95%: 0.8–7.6), 0.8% (CI 95%: 0.1-6.1), 34.5% (CI 95%: 27.6-42.6), 19.9% (CI 95%: 14.5-27.1) and 3.4% (95% CI: 1.2-9.1). The cumulative incidences for CMV and EBV did not show a statistically significant difference between the groups who received antiviral prophylaxis (acyclovir or famciclovir) and those who did not. Cox analyses showed no significant effect of antivirals on CMV with an adjusted HR of 0.55 (95% CI: 0.24–1.26) for acyclovir and 0.82 (95% CI: 0.30–2.29) for famciclovir. The same was true for EBV with an adjusted HR of 1.41 (95% CI: 0.63–3.14) for acyclovir and 0.79 (95% CI: 0.36–1.72) for famciclovir. Our study showed no evidence of an effect with use of famciclovir or acyclovir prophylaxis on EBV and CMV infections. Very few cases of HSV and VZV infections were diagnosed in this cohort, which is consistent with the idea that acyclovir and famciclovir are effective against the latter viruses.

Page generated in 0.0575 seconds