31 |
Modelling Conditional Quantiles of CEE Stock Market Returns / Modelling Conditional Quantiles of CEE Stock Market ReturnsTóth, Daniel January 2015 (has links)
Correctly specified models to forecast returns of indices are important for in- vestors to minimize risk on financial markets. This thesis focuses on conditional Value at Risk modeling, employing flexible quantile regression framework and hence avoiding the assumption on the return distribution. We apply semi- parametric linear quantile regression (LQR) models with realized variance and also models with positive and negative semivariance which allows for direct modelling of the quantiles. Four European stock price indices are taken into account: Czech PX, Hungarian BUX, German DAX and London FTSE 100. The objective is to investigate how the use of realized variance influence the VaR accuracy and the correlation between the Central & Eastern and Western European indices. The main contribution is application of the LQR models for modelling of conditional quantiles and comparison of the correlation between European indices with use of the realized measures. Our results show that linear quantile regression models on one-step-ahead forecast provide better fit and more accurate modelling than classical VaR model with assumption of nor- mally distributed returns. Therefore LQR models with realized variance can be used as accurate tool for investors. Moreover we show that diversification benefits are...
|
32 |
Realized Jump GARCH model: pomůže dekompozice volatility vylepšit predikční schopnosti modelu? / Realized Jump GARCH model: Can decomposition of volatility improve its forecasting?Poláček, Jiří January 2014 (has links)
The present thesis focuses on exploration of the applicability of realized measures in volatility modeling and forecasting. We provide a first comprehensive study of jump variation impact on future volatility of Central and Eastern European stock markets. As a main workhorse, the recently proposed Realized Jump GARCH model, which enables a study of the impact of jump variation on future volatility forecasts, is used. In addition, we estimate Realized GARCH and heterogeneous autoregressive (HAR) models using one-minute and five-minute high frequency data. We find that jumps are important for future volatility, but only to a limited extent due to the high level of information aggregation within the stock market index. Moreover, Realized (Jump) GARCH models outperform the standard GARCH model in terms of data fit and forecasting performance. Comparison of forecasts with HAR models reveals that Realized (Jump) GARCH models capture higher portion of volatility variation. Eventually, Realized Jump GARCH compared to other Realized GARCH models provides comparable or even better forecasting performance.
|
33 |
[en] HPA MODEL FOR MODELING HIGH FREQUENCY DATA: APPLICATION TO FORECAST HOURLY ELECTRIC LOAD / [pt] MODELO HPA PARA A MODELAGEM DE DADOS DE ALTA FREQUÊNCIA: APLICAÇÃO À PREVISÃO HORÁRIA DE CARGA ELÉTRICASCHAIANE NOGUEIRA OUVERNEY BARROSO 28 December 2010 (has links)
[pt] A previsão de curto prazo, que envolve dados de alta frequência, é essencial para a confiabilidade e eficiência da operação do setor elétrico, fazendo com que a alocação da carga seja feita de forma eficiente, além de indicar possíveis distorções nos próximos períodos (dias, horas, ou frações de hora). A fim de garantir a operação energética, diversas abordagens têm sido empregadas com vistas à previsão de carga de energia a curto prazo. Dentre elas, pode-se citar os modelos híbridos de Séries Temporais, Lógica Fuzzy e Redes Neurais e o Método Holt-Winters com múltiplos ciclos que é a principal ferramenta utilizada atualmente. O HPA (Hierarchical Profiling Approach) é um modelo que decompõe a variabilidade dos dados de séries temporais em três componentes: determinística, estocástica e ruído. A metodologia é capaz de tratar observações únicas, periódicas e aperiódicas, e ao mesmo tempo, serve como uma técnica de pré-branqueamento. Este trabalho tem por objetivo implementar o HPA e aplicá-lo a dados de carga de energia elétrica de 15 em 15 minutos pra um estado da região Sudeste do Brasil. Também serão analisadas as previsões de curto prazo geradas pelo modelo para a série considerada, visto que a habilidade preditiva do HPA ainda é desconhecida para séries brasileiras. As previsões forneceram Coeficiente U de Theil igual a 0,36 e um Erro Percentual Absoluto Médio (MAPE, Mean Absolute Percentage Error) de 5,46%, o qual é bem inferior ao valor fornecido pelo Modelo Ingênuo usado para comparação (15,08%). / [en] Short-term forecast, which involves high frequency data, is essential for a reliable and efficient electricity sector operation, enabling an efficient power load allocation and indicating possible distortions in the coming periods (days, hours, or hour fractions). To ensure the operation efficiency, several approaches have been employed in order to forecast the short-term load. Among them, one can mention the hybrid models of Time Series, Fuzzy Logic and Neural Networks and Holt-Winters Method with multiple cycles, which is the main tool used today. The HPA (Hierarchical Profiling Approach) model decomposes the variability of time series data into three components: deterministic, stochastic and noise. The model is capable of modeling single, periodic and aperiodic observations, and at the same time function as a pre-whitening technique. This work aims to implement the HPA and to apply it in 15 in 15 minutes load data of a Brazil’s southeastern state, since the predictive ability of the HPA is still not known for the Brazilian series. The short-term forecasts estimated for the series considered are analyzed and provided a Theil-U Coefficient equal to 0.36 and a Mean Absolute Percentage Error (MAPE) of 5.46%, which is smaller than the value given by the Naive Model (15.08%).
|
34 |
Statistical Models of Market Reactions to Influential TradesGuo, Yi-Ting 16 July 2007 (has links)
In this study, we consider high frequency transaction data of NYSE, and apply statistical methods to characterize each trade into two classes, influential and ordinary liquidity trades. First, a median based approach is used to establish a high R-square price-volume model for high frequency data. Next, transactions are classified into four states based on the trade price, trade volume, quotes, and quoted depth. Volume weighted transition probability of the four states are investigated and shown to be distinct for informed trades and ordinary liquidity trades. Furthermore, four market reaction factors are introduced and studied. Logistic regression models of the influential trades are established based on the four factors and odds ratios are used to select the cutoff points.
|
35 |
On autocorrelation estimation of high frequency squared returnsPao, Hsiao-Yung 14 January 2010 (has links)
In this paper, we investigate the problem of estimating the autocorrelation of squared returns modeled by diffusion processes with data observed at non-equi-spaced discrete times. Throughout, we will suppose that the stock price processes evolve in continuous time as the Heston-type stochastic volatility processes and the transactions arrive randomly according to a Poisson process. In order to estimate the autocorrelation at a fixed delay, the original non-equispaced data will be synchronized. When imputing missing data, we adopt the previous-tick
interpolation scheme. Asymptotic property of the sample autocorrelation of squared returns
based on the previous-tick synchronized data will be investigated. Simulation studies are performed
and applications to real examples are illustrated.
|
36 |
High frequency data aggregation and Value-at-Risk / Aukšto dažnio duomenų agregavimas ir vertės pokyčio rizikaPranckevičiūtė, Milda 20 September 2011 (has links)
Value-at-risk (VaR) model as a tool to estimate market risk is considered in the thesis. It is a statistical model defined as the maximum future loss due to likely changes in the value of financial assets portfolio during a certain period with a certain probability. A new definition of the aggregated VaR is given and the empirical study about different currencies position VaR estimates’ dependence on data aggregation functions (pointwise, maximum value, minimum value and average value) is provided. Functional ρ−GARCH(1,1) model is introduced and theorems of the stationary solution existence and maximum likelihood estimators of model parameters consistency are proved. Additionally, some examples of the model taking known density function of aggregated observations are given. Next, the general Hilbert space valued time series is presented and GARCH(1,1) model with univariate volatility is investigated. Theorems of the stationary solution existence, maximum likelihood estimators of model parameters consistency and asymptotic normality are proved; the analysis of residuals is provided. In the last chapter of the thesis the empirical study about Hurst index intraday value dependence on data aggregation taking different foreign currencies’ absolute returns is presented. / Disertacijoje nagrinėjamas vertės pokyčio rizikos modelis. Tai toks statistinis modelis, kurį taikant su tam tikra tikimybe įvertinamas didžiausias galimas nustatyto laikotarpio nuostolis, kredito įstaigos patiriamas dėl neigiamų taikomos finansinės priemonės vertės pokyčių. Apibrėžiamas agreguotų duomenų vertės pokyčio rizikos modelis ir pateikiamas praktinis tyrimas apie valiutų pozicijos vertės pokyčio rizikos modelio įvertinių priklausomybę nuo duomenų agregavimo taisyklės (pataškio, didžiausios vertės, mažiausios vertės ir vidutinės vertės). Kitame disertacijos skyriuje pristatomas naujas funkcinis ρ−GARCH(1,1) modelis, įrodomos stacionaraus sprendinio egzistavimo ir didžiausio tikėtinumo metodu įvertintų parametrų suderinamumo teoremos. Taip pat pateikiama keletas apibrėžtojo modelio pavyzdžių, kai žinoma agreguotų grąžų tankio funkcija. Disertacijoje apibrėžiamas Hilberto erdvės GARCH(1,1) modelis su vienmačiu kintamumu. Nagrinėjamos modelio savybės ir įrodomos stacionaraus sprendinio egzistavimo, didžiausio tikėtinumo metodu vertinamų parametrų suderinamumo ir asimptotinio normalumo teoremos, atliekama liekanų analizė. Paskutiniame disertacijos skyriuje aprašomas atliktas empirinis tyrimas apie Hursto indekso, kaip ilgos atminties parametro, priklausomybę nuo agregavimo taisyklės dienos metu, pasitelkiant absoliučias valiutų kursų grąžas.
|
37 |
Aukšto dažnio duomenų agregavimas ir vertės pokyčio rizika / High frequency data aggregation and Value-at-RiskPranckevičiūtė, Milda 20 September 2011 (has links)
Disertacijoje nagrinėjamas vertės pokyčio rizikos modelis. Tai toks statistinis modelis, kurį taikant su tam tikra tikimybe įvertinamas didžiausias galimas nustatyto laikotarpio nuostolis, kredito įstaigos patiriamas dėl neigiamų taikomos finansinės priemonės vertės pokyčių. Apibrėžiamas agreguotų duomenų vertės pokyčio rizikos modelis ir pateikiamas praktinis tyrimas apie valiutų pozicijos vertės pokyčio rizikos modelio įvertinių priklausomybę nuo duomenų agregavimo taisyklės (pataškio, didžiausios vertės, mažiausios vertės ir vidutinės vertės). Kitame disertacijos skyriuje pristatomas naujas funkcinis ρ−GARCH(1,1) modelis, įrodomos stacionaraus sprendinio egzistavimo ir didžiausio tikėtinumo metodu įvertintų parametrų suderinamumo teoremos. Taip pat pateikiama keletas apibrėžtojo modelio pavyzdžių, kai žinoma agreguotų grąžų tankio funkcija. Disertacijoje apibrėžiamas Hilberto erdvės GARCH(1,1) modelis su vienmačiu kintamumu. Nagrinėjamos modelio savybės ir įrodomos stacionaraus sprendinio egzistavimo, didžiausio tikėtinumo metodu vertinamų parametrų suderinamumo ir asimptotinio normalumo teoremos, atliekama liekanų analizė. Paskutiniame disertacijos skyriuje aprašomas atliktas empirinis tyrimas apie Hursto indekso, kaip ilgos atminties parametro, priklausomybę nuo agregavimo taisyklės dienos metu, pasitelkiant absoliučias valiutų kursų grąžas. / Value-at-risk (VaR) model as a tool to estimate market risk is considered in the thesis. It is a statistical model defined as the maximum future loss due to likely changes in the value of financial assets portfolio during a certain period with a certain probability. A new definition of the aggregated VaR is given and the empirical study about different currencies position VaR estimates’ dependence on data aggregation functions (pointwise, maximum value, minimum value and average value) is provided. Functional ρ−GARCH(1,1) model is introduced and theorems of the stationary solution existence and maximum likelihood estimators of model parameters consistency are proved. Additionally, some examples of the model taking known density function of aggregated observations are given. Next, the general Hilbert space valued time series is presented and GARCH(1,1) model with univariate volatility is investigated. Theorems of the stationary solution existence, maximum likelihood estimators of model parameters consistency and asymptotic normality are proved; the analysis of residuals is provided. In the last chapter of the thesis the empirical study about Hurst index intraday value dependence on data aggregation taking different foreign currencies’ absolute returns is presented.
|
38 |
Verificação e análise dos fatos estilizados no mercado de ações brasileiro /Nervis, Jonis Jecks. January 2010 (has links)
Orientador: Antonio Fernando Crepaldi / Banca: Fernando Fagundes Ferreira / Banca: Jair Wagner de Souza Manfrinato / Resumo: Estudos que proporcionem conhecer de forma mais adequada o mercado de capitais brasileiro são uma necessidade para um país que a cada dia tem a sua importância no cenário internacional acentuada. Compreender a dinâmica das flutuações do mercado de ações é um desafio científico possibilitado, no Brasil, por dois aspectos importantes: disponibilidade de dados de alta frequencia sobre os preços praticados no mercado e a utilização de métodos computacionais. O objetivo dessa pesquisa é verificar e analisar os principais fatos estilizados observados em séries temporais financeiras: agrupamento de volatilidade, distribuições de probabilidade com caudas gordas e a presença de memória de longo alcance na série temporal dos retornos absolutos. Para isso, foram utilizadas e analisadas as cotações intraday de ações de dez companhias negociadas na Bolsa de Valores, Mercadorias e Futuros que correspondem juntas a uma participação de 52,1%, para a data de 01/09/2009, no Ìndice Bovespa. Verificou-se a existência de vários fatos estilizados em todas as ações da amostra, bem como se procedeu a caracterização desses comportamentos por meio de gráficos e medidas estatísticas / Abstract: Studies that provide to know in a more suitable way the Brazilian money market are a necessity for a country that has its importance increased in the international scenery every day. Understanding the dynamics of the stock market fluctuation is a scientific challenge possible, in Brazil, because of two important aspects: availability of high frequency data on the prices practiced in the stock market and the use of computing methods. The objective of this survey is to verify and analyze the stylized facts observed in financial seasonal series: gathering of volatility, probability distribution with fat tails and the presence of high reaching memory in the seasonal series of abolute recurrence. For this, it was used and analyzed the intraday quotations over stocks of ten enterprises in the stock exchange, commodities and futures that correspond together to a participation of 52,1% to th data of 09/01/2009, in the Bovespa index. It was verified the existence os several stylized fact in all stock samples and how it was preceded the characterization of this behavior by graphic displays and statistical measures / Mestre
|
39 |
Dados de alta frequência : averiguando o impacto de microestrutura de mercado e sazonalidade intradiária na detecção de saltos e estimação da variação quadráticaMarmitt, Juliano January 2012 (has links)
Neste trabalho, visamos mostrar as características usuais dos dados de alta frequência, bem como utilizar modelagem não paramétrica para estimar a variância/volatilidade para esses dados. Após uma revisão sobre microestrutura de mercado, sazonalidade intradiária, variação quadrática e saltos, utilizamos os dados da PETR4 para estimar a variância realizada e variação bipotente. Determinadas essas séries, testamos se há saltos nas mesmas. Em seguida, analisamos o impacto que a microestrutura de mercado e a sazonalidade intradiária causam na detecção dos saltos. Concluímos que, enquanto a presença de microestrutura aponta para um número de saltos menor que o esperado, a sazonalidade intradiária aponta para o lado contrário, ou seja, ela causa um viés para detectar mais saltos, dada a estrutura típica da curva de volatilidade ao longo do dia em formato de J invertido, causando mais saltos incorretamente detectados no período mais volátil do dia (que corresponde a abertura da bolsa de valores). / In this work, we aim to show the usual characteristics of high-frequency data and the estimation of variance/volatility for this kind of data using nonparametric models. After reviewing concepts about market microstructure, intraday seasonality, quadratic variation and jumps, we use PETR4 data to estimate realized variance and bipower variation. With these series determined, we test for jumps. Then, we analyze the impact that market microstructure and intraday seasonality causes in jump detection. We conclude that while microstructure noise indicates fewer jumps than the ideal amount, intraday seasonality goes in the opposite direction, i.e., it detects more jumps than it should, since the typical inverted-J-shaped intraday volatility pattern tends to incorrectly detect more jumps at the most volatile period (which is when stock markets start negotiations).
|
40 |
Dados de alta frequência : averiguando o impacto de microestrutura de mercado e sazonalidade intradiária na detecção de saltos e estimação da variação quadráticaMarmitt, Juliano January 2012 (has links)
Neste trabalho, visamos mostrar as características usuais dos dados de alta frequência, bem como utilizar modelagem não paramétrica para estimar a variância/volatilidade para esses dados. Após uma revisão sobre microestrutura de mercado, sazonalidade intradiária, variação quadrática e saltos, utilizamos os dados da PETR4 para estimar a variância realizada e variação bipotente. Determinadas essas séries, testamos se há saltos nas mesmas. Em seguida, analisamos o impacto que a microestrutura de mercado e a sazonalidade intradiária causam na detecção dos saltos. Concluímos que, enquanto a presença de microestrutura aponta para um número de saltos menor que o esperado, a sazonalidade intradiária aponta para o lado contrário, ou seja, ela causa um viés para detectar mais saltos, dada a estrutura típica da curva de volatilidade ao longo do dia em formato de J invertido, causando mais saltos incorretamente detectados no período mais volátil do dia (que corresponde a abertura da bolsa de valores). / In this work, we aim to show the usual characteristics of high-frequency data and the estimation of variance/volatility for this kind of data using nonparametric models. After reviewing concepts about market microstructure, intraday seasonality, quadratic variation and jumps, we use PETR4 data to estimate realized variance and bipower variation. With these series determined, we test for jumps. Then, we analyze the impact that market microstructure and intraday seasonality causes in jump detection. We conclude that while microstructure noise indicates fewer jumps than the ideal amount, intraday seasonality goes in the opposite direction, i.e., it detects more jumps than it should, since the typical inverted-J-shaped intraday volatility pattern tends to incorrectly detect more jumps at the most volatile period (which is when stock markets start negotiations).
|
Page generated in 0.1006 seconds