631 |
Efficient Algorithms for the Computation of Optimal Quadrature Points on Riemannian ManifoldsGräf, Manuel 05 August 2013 (has links) (PDF)
We consider the problem of numerical integration, where one aims to approximate an integral of a given continuous function from the function values at given sampling points, also known as quadrature points. A useful framework for such an approximation process is provided by the theory of reproducing kernel Hilbert spaces and the concept of the worst case quadrature error. However, the computation of optimal quadrature points, which minimize the worst case quadrature error, is in general a challenging task and requires efficient algorithms, in particular for large numbers of points.
The focus of this thesis is on the efficient computation of optimal quadrature points on the torus T^d, the sphere S^d, and the rotation group SO(3). For that reason we present a general framework for the minimization of the worst case quadrature error on Riemannian manifolds, in order to construct numerically such quadrature points. Therefore, we consider, for N quadrature points on a manifold M, the worst case quadrature error as a function defined on the product manifold M^N. For the optimization on such high dimensional manifolds we make use of the method of steepest descent, the Newton method, and the conjugate gradient method, where we propose two efficient evaluation approaches for the worst case quadrature error and its derivatives. The first evaluation approach follows ideas from computational physics, where we interpret the quadrature error as a pairwise potential energy. These ideas allow us to reduce for certain instances the complexity of the evaluations from O(M^2) to O(M log(M)). For the second evaluation approach we express the worst case quadrature error in Fourier domain. This enables us to utilize the nonequispaced fast Fourier transforms for the torus T^d, the sphere S^2, and the rotation group SO(3), which reduce the computational complexity of the worst case quadrature error for polynomial spaces with degree N from O(N^k M) to O(N^k log^2(N) + M), where k is the dimension of the corresponding manifold. For the usual choice N^k ~ M we achieve the complexity O(M log^2(M)) instead of O(M^2). In conjunction with the proposed conjugate gradient method on Riemannian manifolds we arrive at a particular efficient optimization approach for the computation of optimal quadrature points on the torus T^d, the sphere S^d, and the rotation group SO(3).
Finally, with the proposed optimization methods we are able to provide new lists with quadrature formulas for high polynomial degrees N on the sphere S^2, and the rotation group SO(3). Further applications of the proposed optimization framework are found due to the interesting connections between worst case quadrature errors, discrepancies and potential energies. Especially, discrepancies provide us with an intuitive notion for describing the uniformity of point distributions and are of particular importance for high dimensional integration in quasi-Monte Carlo methods. A generalized form of uniform point distributions arises in applications of image processing and computer graphics, where one is concerned with the problem of distributing points in an optimal way accordingly to a prescribed density function. We will show that such problems can be naturally described by the notion of discrepancy, and thus fit perfectly into the proposed framework. A typical application is halftoning of images, where nonuniform distributions of black dots create the illusion of gray toned images. We will see that the proposed optimization methods compete with state-of-the-art halftoning methods.
|
632 |
Twisted K-theory with coefficients in a C*-algebra and obstructions against positive scalar curvature metrics / Getwistete K-Theorie mit Koeffizienten in einer C*-Algebra und Obstruktionen gegen positive skalare KrümmungPennig, Ulrich 31 August 2009 (has links)
No description available.
|
633 |
České drama v době moderny: obrazy vůdce / Czech Drama in Early Modernism: The Portrayal of LeadersPospíšil, Jan January 2021 (has links)
The thesis constitutes the analysis of selected Czech dramas from the beginning of the 20th century representing various portrayals of national leaders. In my view, the dramas are Apollonian images of a kind representing the dreams of their creators about the strength and greatness, both individual and national. That is because, on one hand, the national leader is an exceptional individual, an exquisite human specimen and as such he or she corresponds to Nietzsche's characterization of a tragic hero as the highest phenomenon of the will. But at the same time, he or she is a national educator. Individual works represent various forms of how the leader educates and edifies the nation and whether he or she leads by command or by example. The dramas show us the leaders, who not only tame, purify, but also urge to growth those, whom they lead. The approach of the Czech playwrights is essentially mythopoetic. Their works constitute contributions to the creation or re-creation of national mythology, in other words, they deal with the meaning of the existence of the nation, or the national condition. They represent a dialogue or a polemic with one particular national mythology formed at the time that of T. G. Masaryk as he stated it in his works Česká otázka (1895), Naše nynější krise (1895), and Jan Hus...
|
634 |
Efficient Algorithms for the Computation of Optimal Quadrature Points on Riemannian ManifoldsGräf, Manuel 30 May 2013 (has links)
We consider the problem of numerical integration, where one aims to approximate an integral of a given continuous function from the function values at given sampling points, also known as quadrature points. A useful framework for such an approximation process is provided by the theory of reproducing kernel Hilbert spaces and the concept of the worst case quadrature error. However, the computation of optimal quadrature points, which minimize the worst case quadrature error, is in general a challenging task and requires efficient algorithms, in particular for large numbers of points.
The focus of this thesis is on the efficient computation of optimal quadrature points on the torus T^d, the sphere S^d, and the rotation group SO(3). For that reason we present a general framework for the minimization of the worst case quadrature error on Riemannian manifolds, in order to construct numerically such quadrature points. Therefore, we consider, for N quadrature points on a manifold M, the worst case quadrature error as a function defined on the product manifold M^N. For the optimization on such high dimensional manifolds we make use of the method of steepest descent, the Newton method, and the conjugate gradient method, where we propose two efficient evaluation approaches for the worst case quadrature error and its derivatives. The first evaluation approach follows ideas from computational physics, where we interpret the quadrature error as a pairwise potential energy. These ideas allow us to reduce for certain instances the complexity of the evaluations from O(M^2) to O(M log(M)). For the second evaluation approach we express the worst case quadrature error in Fourier domain. This enables us to utilize the nonequispaced fast Fourier transforms for the torus T^d, the sphere S^2, and the rotation group SO(3), which reduce the computational complexity of the worst case quadrature error for polynomial spaces with degree N from O(N^k M) to O(N^k log^2(N) + M), where k is the dimension of the corresponding manifold. For the usual choice N^k ~ M we achieve the complexity O(M log^2(M)) instead of O(M^2). In conjunction with the proposed conjugate gradient method on Riemannian manifolds we arrive at a particular efficient optimization approach for the computation of optimal quadrature points on the torus T^d, the sphere S^d, and the rotation group SO(3).
Finally, with the proposed optimization methods we are able to provide new lists with quadrature formulas for high polynomial degrees N on the sphere S^2, and the rotation group SO(3). Further applications of the proposed optimization framework are found due to the interesting connections between worst case quadrature errors, discrepancies and potential energies. Especially, discrepancies provide us with an intuitive notion for describing the uniformity of point distributions and are of particular importance for high dimensional integration in quasi-Monte Carlo methods. A generalized form of uniform point distributions arises in applications of image processing and computer graphics, where one is concerned with the problem of distributing points in an optimal way accordingly to a prescribed density function. We will show that such problems can be naturally described by the notion of discrepancy, and thus fit perfectly into the proposed framework. A typical application is halftoning of images, where nonuniform distributions of black dots create the illusion of gray toned images. We will see that the proposed optimization methods compete with state-of-the-art halftoning methods.
|
635 |
Advanced Stochastic Signal Processing and Computational Methods: Theories and ApplicationsRobaei, Mohammadreza 08 1900 (has links)
Compressed sensing has been proposed as a computationally efficient method to estimate the finite-dimensional signals. The idea is to develop an undersampling operator that can sample the large but finite-dimensional sparse signals with a rate much below the required Nyquist rate. In other words, considering the sparsity level of the signal, the compressed sensing samples the signal with a rate proportional to the amount of information hidden in the signal. In this dissertation, first, we employ compressed sensing for physical layer signal processing of directional millimeter-wave communication. Second, we go through the theoretical aspect of compressed sensing by running a comprehensive theoretical analysis of compressed sensing to address two main unsolved problems, (1) continuous-extension compressed sensing in locally convex space and (2) computing the optimum subspace and its dimension using the idea of equivalent topologies using Köthe sequence.
In the first part of this thesis, we employ compressed sensing to address various problems in directional millimeter-wave communication. In particular, we are focusing on stochastic characteristics of the underlying channel to characterize, detect, estimate, and track angular parameters of doubly directional millimeter-wave communication. For this purpose, we employ compressed sensing in combination with other stochastic methods such as Correlation Matrix Distance (CMD), spectral overlap, autoregressive process, and Fuzzy entropy to (1) study the (non) stationary behavior of the channel and (2) estimate and track channel parameters. This class of applications is finite-dimensional signals. Compressed sensing demonstrates great capability in sampling finite-dimensional signals. Nevertheless, it does not show the same performance sampling the semi-infinite and infinite-dimensional signals. The second part of the thesis is more theoretical works on compressed sensing toward application. In chapter 4, we leverage the group Fourier theory and the stochastical nature of the directional communication to introduce families of the linear and quadratic family of displacement operators that track the join-distribution signals by mapping the old coordinates to the predicted new coordinates. We have shown that the continuous linear time-variant millimeter-wave channel can be represented as the product of channel Wigner distribution and doubly directional channel. We notice that the localization operators in the given model are non-associative structures. The structure of the linear and quadratic localization operator considering group and quasi-group are studied thoroughly. In the last two chapters, we propose continuous compressed sensing to address infinite-dimensional signals and apply the developed methods to a variety of applications. In chapter 5, we extend Hilbert-Schmidt integral operator to the Compressed Sensing Hilbert-Schmidt integral operator through the Kolmogorov conditional extension theorem. Two solutions for the Compressed Sensing Hilbert Schmidt integral operator have been proposed, (1) through Mercer's theorem and (2) through Green's theorem. We call the solution space the Compressed Sensing Karhunen-Loéve Expansion (CS-KLE) because of its deep relation to the conventional Karhunen-Loéve Expansion (KLE). The closed relation between CS-KLE and KLE is studied in the Hilbert space, with some additional structures inherited from the Banach space. We examine CS-KLE through a variety of finite-dimensional and infinite-dimensional compressible vector spaces. Chapter 6 proposes a theoretical framework to study the uniform convergence of a compressible vector space by formulating the compressed sensing in locally convex Hausdorff space, also known as Fréchet space. We examine the existence of an optimum subspace comprehensively and propose a method to compute the optimum subspace of both finite-dimensional and infinite-dimensional compressible topological vector spaces. To the author's best knowledge, we are the first group that proposes continuous compressed sensing that does not require any information about the local infinite-dimensional fluctuations of the signal.
|
636 |
Étude Expérimentale des Ondes et Structures Cohérentes dans un Écoulement Tridimensionnel de Cavité OuverteBasley, Jérémy 19 October 2012 (has links) (PDF)
Une écoulement de cavité ouverte tridimensionnel saturé non-linéairement est étudié par une approche spatio-temporelle utilisant des données expérimentales résolues à la fois en temps et en espace. Ces données ont été acquises dans deux plans longitudinaux, respectivement perpendiculaire et parallèle au fond de la cavité, dans le régime incompressible, en air ou en eau. À l'aide de multiples méthodes de décompositions globales en temps et en espace, les ondes et les structures cohérentes constituant la dynamique dans le régime permanent et pouvant être produites par des mécanismes d'instabilités différents sont identifiées et caractérisées.Tout d'abord, on approfondit la compréhension de l'effet des non-linéarités sur les oscillations auto-entretenues de la couche cisaillée impactante et leurs interactions avec l'écoulement intra-cavitaire. En particulier, l'analyse spectrale d'une portion de l'espace des paramètres permet de mettre en évidence un lien entre l'accrochage des modes d'oscillations auto-entretenues, la modulation d'amplitude au niveau du coin impactant et l'intermittence de ces modes. De plus, l'observation des basses fréquences intéragissant fortement avec les oscillations de la couche de mélange démontre l'existence d'une dynamique tridimensionnelle intrinsèque à l'intérieur de la cavité malgré les perturbations causées par la couche cisaillée instable.Les analyses de stabilité linéaire ont montré que des instabilités centrifuges peuvent résulter de la courbure induite par la recirculation. L'étude de la dynamique après saturation révèle de nombreuses structures cohérentes dont les propriétés sont quantifiées et classées en s'appuyant sur la forme des instabilités sous-jacentes: des ondes transverses progressives ou stationnaires. Enfin, certains comportements des structures saturées suggèrent que les mécanismes non-linéaires gouvernant le développement de l'écoulement une fois sorti du régime linéaire pourraient être étudiés dans le cadre des équations d'amplitude.
|
637 |
Sampling Inequalities and Applications / Sampling Ungleichungen und AnwendungenRieger, Christian 28 March 2008 (has links)
No description available.
|
638 |
A Comparison of Models and Methods for Spatial Interpolation in Statistics and Numerical Analysis / Eine Gegenüberstellung von Modellen und Methoden zur räumlichen Interpolation in der Statistik und der Numerischen AnalysisScheuerer, Michael 28 October 2009 (has links)
No description available.
|
639 |
Spatial Interpolation and Prediction of Gaussian and Max-Stable Processes / Räumliche Interpolation und Vorhersage von Gaußschen und max-stabilen ProzessenOesting, Marco 03 May 2012 (has links)
No description available.
|
640 |
Inférence de réseaux d'interaction protéine-protéine par apprentissage statistiqueBrouard, Céline 14 February 2013 (has links) (PDF)
L'objectif de cette thèse est de développer des outils de prédiction d'interactions entre protéines qui puissent être appliqués en particulier chez l'homme, sur les protéines qui constituent un réseau avec la protéine CFTR. Cette protéine, lorsqu'elle est défectueuse, est impliquée dans la mucoviscidose. Le développement de méthodes de prédiction in silico peut s'avérer utile pour suggérer aux biologistes de nouvelles cibles d'interaction et pour mieux expliquer les fonctions des protéines présentes dans ce réseau. Nous proposons une nouvelle méthode pour le problème de la prédiction de liens dans un réseau. Afin de bénéficier de l'information des données non étiquetées, nous nous plaçons dans le cadre de l'apprentissage semi-supervisé. Nous abordons ce problème de prédiction comme une tâche d'apprentissage d'un noyau de sortie, appelée régression à noyau de sortie. Un noyau de sortie est supposé coder les proximités existantes entre les noeuds du graphe et l'objectif est d'approcher ce noyau à partir de descriptions appropriées en entrée. L'utilisation de l'astuce du noyau dans l'ensemble de sortie permet de réduire le problème d'apprentissage à partir de paires à un problème d'apprentissage d'une fonction d'une seule variable à valeurs dans un espace de Hilbert. En choisissant les fonctions candidates pour la régression dans un espace de Hilbert à noyau reproduisant à valeur opérateur, nous développons, comme dans le cas de fonctions à valeurs scalaires, des outils de régularisation. Nous établissons en particulier des théorèmes de représentation dans le cas supervisé et dans le cas semi-supervisé, que nous utilisons ensuite pour définir de nouveaux modèles de régression pour différentes fonctions de coût, appelés IOKR-ridge et IOKR-margin. Nous avons d'abord testé l'approche développée sur des données artificielles, des problèmes test ainsi que sur un réseau d'interaction protéine-protéine chez la levure S. Cerevisiae et obtenu de très bons résultats. Puis nous l'avons appliquée à la prédiction d'interactions entre protéines dans le cas d'un réseau construit autour de la protéine CFTR.
|
Page generated in 0.0476 seconds