• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 304
  • 24
  • 22
  • 10
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 407
  • 284
  • 199
  • 199
  • 199
  • 118
  • 111
  • 60
  • 39
  • 35
  • 31
  • 30
  • 29
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Behavior of Gas Hydrate-Bearing Soils during Dissociation and its Simulation / ガスハイドレート含有地盤の分解時における挙動及びその解析

Iwai, Hiromasa 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18933号 / 工博第3975号 / 新制||工||1612(附属図書館) / 31884 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 木村 亮, 教授 勝見 武, 准教授 木元 小百合 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
352

Classification and Description of Gas Hydrate Systems in the Northwestern Gulf of Mexico

Skopec, Stuart Robert January 2021 (has links)
No description available.
353

The Effect of Monoethylene Glycol (MEG) on CO2 Corrosion Mechanisms

Ruiz, Roberto A., January 2017 (has links)
No description available.
354

Cryo brines - Phasengleichgewichte von Salz-Wasser-Systemen bei tiefen Temperaturen

Hennings, Erik 12 December 2014 (has links) (PDF)
Die Frage nach der Möglichkeit von Leben auf anderen Planeten, vor allem auf dem Mars, steht in einem engen Zusammenhang mit der Verfügbarkeit von flüssigem Wasser. Dies ist bei den vorherrschenden klimatischen Bedingungen, vor allem der tiefen Temperatur, nur mittels einer Gefrierpunktserniedrigung durch Salze erklärbar. Die vorliegende Arbeit beschäftigt sich daher mit Phasengleichgewichten verschiedener Salz-Wasser-Systeme bei tiefen Temperaturen. Dabei wurden nach einer Sammlung von Literaturdaten und einer Ermittlung der Lücken innerhalb dieser verschiedene Systeme nach Mars-Relevanz, sowie chemischer Systematik ausgewählt und experimentell untersucht. Insgesamt wurden dabei 22 binäre Phasendiagramme von Salz-Wasser-Systemen betrachtet und 29 festen Phasen mittels Röntgen-Einkristallstrukturanalyse aufgeklärt. Aus diesen Strukturen wurde ein Modell zur Beschreibung einer zweiten Hydratationssphäre über eine Wechselwirkungsbilanz abgeleitet und an den verfügbaren Strukturen geprüft.
355

Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons

Borchardt, Lars, Nickel, Winfried, Casco, Mirian, Senkovska, Irena, Bon, Volodymyr, Wallacher, Dirk, Grimm, Nico, Krause, Simon, Silvestre-Albero, Joaquín 05 April 2017 (has links) (PDF)
Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.
356

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
357

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
358

Mechanical and Thermal Study of Hydrate Bearing Sediments

Yun, Tae Sup 20 July 2005 (has links)
Gas hydrate is a naturally occurring crystalline compound formed by water molecules and encapsulated gas molecules. The interest in gas hydrate reflects scientific, energy and safety concerns - climate change, future energy resources and seafloor stability. Gas hydrates form in the pore space of sediments, under high pressure and low temperature conditions. This research focuses on the fundamental understanding of hydrate bearing sediments, with emphasis on mechanical behavior, thermal properties and lens formation. Load-induced cementation and decementation effects are explored with lightly cemented loose and dense soil specimens subjected to ko-loading; the small-strain stiffness evolution inferred from shear wave velocity measurement denounces stiffness loss prior to structural collapse upon loading. Systematic triaxial tests address the intermediate and large strain response of hydrate bearing sediments for different mean particle size, applied pressure and hydrate concentration in the pore space; hydrate concentration determines elastic stiffness and undrained strength when Shyd>45%. A unique sequence of particle-level and macro-scale experiments provide new insight into the role of interparticle contact area, coordination number and pore fluid on heat transfer in particulate materials. Micro-mechanisms and necessary boundary conditions are experimentally analyzed to gain an enhanced understanding of hydrate lens formation in sediments; high specific surface soils and tensile stress fields facilitate lens formation. Finally, a new instrumented high-pressure chamber is designed, constructed and field tested. It permits measuring the mechanical and electrical properties of methane hydrate bearing sediments recovered from pressure cores without losing in situ pressure (~20MPa).
359

INDIAN CONTINENTAL MARGIN GAS HYDRATE PROSPECTS: RESULTS OF THE INDIAN NATIONAL GAS HYDRATE PROGRAM (NGHP) EXPEDITION 01

Collett, Timothy S., Riedel, Michael, Cochran, J.R., Boswell, Ray, Kumar, Pushpendra, Sathe, A.V. 07 1900 (has links)
Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).
360

PRESSURE CORE ANALYSIS: THE KEYSTONE OF A GAS HYDRATE INVESTIGATION

Schultheiss, Peter, Holland, Melanie, Roberts, John, Humphrey, Gary 07 1900 (has links)
Gas hydrate investigations are converging on a suite of common techniques for hydrate observation and quantification. Samples retrieved and analyzed at full in situ pressures are the ”gold standard” with which the physical and chemical analysis of conventional cores, as well as the interpretation of geophysical data, are calibrated and groundtruthed. Methane mass balance calculations from depressurization of pressure cores provide the benchmark for gas hydrate concentration assessment. Nondestructive measurements of pressure cores have removed errors in the estimation of pore volume, making this methane mass balance technique accurate and robust. Data from methane mass balance used to confirm chlorinity baselines makes porewater freshening analysis more accurate. High-resolution nondestructive analysis of gas-hydratebearing cores at in situ pressures and temperatures also provides detailed information on the in situ nature and morphology of gas hydrate in sediments, allowing better interpretation of conventional core thermal images as well as downhole electrical resistivity logs. The detailed profiles of density and Vp, together with spot measurements of Vs, electrical resistivity, and hardness, provide background data essential for modeling the behavior of the formation on a larger scale. X-ray images show the detailed hydrate morphology, which provides clues to the mechanism of deposit formation and data for modeling the kinetics of deposit dissociation. Gashydrate- bearing pressure cores subjected to X-ray tomographic reconstruction provide evidence that gas hydrate morphology in many natural sedimentary environments is particularly complex and impossible to replicate in the laboratory. Even when only a small percentage of the sediment column is sampled with pressure cores, these detailed measurements greatly enhance the understanding and interpretation of the more continuous data sets collected by conventional coring and downhole logging. Pressure core analysis has become the keystone that links these data sets together and is an essential component of modern gas hydrate investigations.

Page generated in 0.0834 seconds