• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 58
  • 13
  • 11
  • 10
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 279
  • 279
  • 64
  • 60
  • 51
  • 49
  • 44
  • 40
  • 39
  • 31
  • 30
  • 29
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Produção de hidrogênio em reatores anaeróbios de leito fluidificado mesofílico a partir de diferentes substratos orgânicos da indústria sucroalcooleira / Hydrogen production in mesophilic anaerobic fluidized bed from different organic substrates sugar industry

Gabriel Catucci Rego 09 May 2016 (has links)
O presente trabalho teve como objetivo avaliar a produção de H2 a partir de diferentes substratos orgânicos da indústria sucroalcooleira, como caldo, melaço e vinhaça da cana-de-açúcar, incluindo a sacarose como uma fonte de carbono sintética. Foram utilizados quatro reatores anaeróbios de leito fluidificado, sendo reator mesofílico caldo (RMC), reator mesofílico melaço (RMM), reator mesofílico sacarose (RMS) e reator mesofílico vinhaça (RMV) mantidos em condição mesofílica (30 ºC) e em concentrações iniciais no substrato de alimentação de 5 gDQO. L-1. O pH do reatores foi mantido entre 4 e 5, os tempos de detenção hidráulica (TDH) empregados foram de 8, 6, 4, 2 e 1 h e a inoculação foi através de um lodo proveniente de um abatedouro de aves, que sofreu tratamento térmico. Em RMC o rendimento de H2 (HY) máximo obtido foi de 1,2 mol H2. mol sacarose-1, ocorrido no TDH de 8 h. O reator (RMM) apresentou um melhor consumo de substrato atingindo um HY de 1,4 mol H2. mol sacarose-1, observado no TDH de 4 h. RMS apresentou o melhor HY em relação aos demais reatores atingindo 3,3 mol H2. mol sacarose-1 no TDH de 6 h. A melhor produção volumétrica de H2 (PVH) obtida foi observada no RMS, onde no TDH de 2 h o reator atingiu 11 L H2. L-1. D-1. RMV, que utilizou vinhaça que passou por tratamento físico-químico através da adição de óxido de cálcio, não apresentou produção de H2. Dentre os principais produtos metabólitos solúveis observados nos reatores durante a operação houve predominância nas concentrações de ácido acético, butírico, isobutírico, propiônico, e succínico, em RMM. No RMC observaram-se maiores concentrações de ácido acético, butírico, lático e propiônico. RMV apresentou predominância de ácido acético, succínico, propiônico e butírico. Em RMS as maiores concentrações foram de ácido propiônico, acético, isobutírico, butírico e etanol. / This study aimed to evaluate the production of H2 from different organic substrates sugar industry, like juice, molasses and vinasse from cane sugar, including sucrose as a source of synthetic carbon. four anaerobic fluidized bed were used, mesophilic broth reactor (RMC), mesophilic molasses reactor (RMM), reactor mesophilic sucrose RMS) and reactor mesophilic vinasse (RMV) maintained at mesophilic condition (30ºC) and at initial concentrations feed substrate 5 gCOD. L-1. The pH of the reactor was kept between 4 and 5, the hydraulic detention time (HDT) used were 8, 6, 4, 2 and 1 h and the inoculation through a sludge from a poultry slaughterhouse, which underwent heat treatment. In MRC H2 yield (HY) maximum obtained was 1.2 mol H2. mol sucrose-1, occurred in HRT of 8 h. The reactor (RMM) showed a better substrate consumption reaching a HY 1.4 mol H2. mol-1 sucrose, HDT observed in 4 h. RMS presented the best HY compared to other reactors reaching 3.3 mol H2. mol-1 sucrose in HRT of 6 h. The best volumetric H2 production (PVH) obtained was observed in the RMS where the TDH 2 h the reactor reached 11 L H2. L-1. D-1. RMV that used vinasse which has undergone physical-chemical treatment by adding calcium oxide, showed no H2 production. Among the main products soluble metabolites observed in the reactors during operation predominated in acetic acid concentrations, butyric, isobutyric, propionic, and succinic in RMM. In MRC were observed higher concentrations of acetic, butyric, lactic and propionic acid. RMV showed predominantly acetic, succinic, propionic and butyric acid. RMS higher concentrations were propionic acid, acetic, isobutyric, butyric acid and ethanol.
222

Dynamic and transient modelling of electrolysers powered by renewable energy sources and cost analysis of electrolytic hydrogen

Roy, Amitava January 2006 (has links)
Hydrogen energy sector has gained significant attention worldwide but one of the key enabling components for its success would be cheaper and sustainable hydrogen production. Hydrogen could be produced directly from natural gas or coal etc; alternatively it could be produced by electrolysis of water powered by renewable energy sources, nuclear energy or fossil fuel. Wind energy is growing rapidly, which can produce cheap hydrogen. Electrolysers can be employed to control the frequency of the electricity grid while also making fuel as a by-product. This thesis concerns the intricacies of hydrogen production by electrolysers from renewable energy sources. A generalised, input-based mathematical model of the electrolyser has been developed for various subsystems, such as current-voltage, Faraday efficiency, gas production, gas purity, differential pressure, temperature subsystem, parasitic losses, gas losses and efficiencies at various stages of operation. Some empirical equations have been developed and some adjusted parameters have been used in the model. The model has been tested and verified against the experimental measurements. A generic method has been developed for modelling the Faraday efficiency. Model simulations have been carried out to investigate the sensitivity of the results to the value of the capacitance and how this affects the dynamic response of the electrolyser. A new sizing method of the electrolyser has been developed for a stand-alone energy system such as the HARI project. The electrolyser model has also been simulated for maximum and efficient hydrogen production in a directly coupled mode of electrolysers with solar PV arrays without the maximum power point (MPP) tracker, which leads to an interesting finding that "electrolysers should not be operated at MPP". It has also been found that the dynamic and intermittent power supply from renewables can damage the stability of electrolysers and reduce the energy capture. This is especially true for pressurised electrolysers, which are favoured by the industry at present. The in-depth theoretical and practical analysis of several aspects confirms - contrary to industry trends - that "Pressurised electrolysers are less energy efficient, less durable, more costly and not adequately compatible for renewable energy powered operation, especially in the stand-alone energy systems, compared to atmospheric electrolysers".
223

Procédé propre de production de chaleur et d'électricité à partir d'un biogaz produit à l'échelle domestique : exemples de matériaux catalytiques de reformage du méthane / Clean process for production of heat and electricity from biogas produced at domestic scale : examples of catalytic materials for methane reforming

Bassil, Siréna 10 April 2014 (has links)
Le reformage catalytique du méthane en hydrogène, vecteur d'énergie pour les piles à combustibles de type Solid Oxide Fuel Cell (SOFC), a été étudié sur des matériaux d'anode à base de métaux supportés (NiO/CeO2, NiO-Y2O3-ZrO2) et également sur des catalyseurs de structure définie (La0,8Sr0,2TiO3+δ). La première famille de catalyseurs a été synthétisée par deux méthodes de préparation : la technique d'imprégnation en milieu aqueux et en milieu organique sur des supports du commerce CeO2 et Y2O3-ZrO2 ou préparés au laboratoire, et par le procédé sol-gel. Le titanate de lanthane dopé au strontium a été préparé par la méthode de co-précipitation et également par la méthode sol-gel. La méthode de préparation a un effet important sur les propriétés physico-chimiques des catalyseurs synthétisés et par conséquent affecte à la fois leur activité catalytique en reformage du méthane et leur résistance à l'empoisonnement par le dépôt de carbone. Les catalyseurs à base de nickel supporté sur cérine ont été par la suite dopés avec l'oxyde de magnésium (formation d'une solution solide MgO-NiO) ainsi qu'avec l'oxyde de lanthane (La2O3-NiO) en vue de limiter la formation de carbone sur la surface catalytique et augmenter ainsi la durée de vie des catalyseurs lors du reformage du méthane. Les résultats obtenus montrent que l'effet de promotion de la phase active NiO par MgO ou La2O3 diminue à la fois le dépôt de carbone mais également les performances catalytiques. Les propriétés physico-chimiques et les performances catalytiques de NiO-Y2O3-ZrO2 préparé par le procédé sol-gel ont été comparées à celles de matériaux commerciaux (Aldrich & Jülich) de même composition. Les résultats expérimentaux montrent que les matériaux synthétisés par la méthode sol-gel sont plus actifs en vaporeformage du méthane que ceux du commerce (dans le domaine de fonctionnement d'une pile SOFC) alors qu'ils présentent une activité similaire à ces derniers en reformage à sec du méthane. La quantité de carbone graphitique formée, quoique supérieure à celle observée dans le cas des catalyseurs commerciaux, demeure faible (< 2%). Ce dépôt de carbone ne provoque qu'une légère diminution des performances catalytiques en reformage à sec du méthane. Ceci est probablement lié à la diminution des sites actifs / The catalytic reforming of methane into hydrogen, for direct operation of Solid Oxide Fuel Cells (SOFCs) on methane, was studied on anode materials such as NiO/CeO2, NiO-Y2O3-ZrO2 and La0.8Sr0.2TiO3+δ. The first group of catalysts was synthesized by two methods: the impregnation technique both in aqueous and organic media (commercial and laboratory made CeO2 and Y2O3-ZrO2), and also using sol-gel process. Lanthanumtitanium oxide host structure doped with strontium was prepared both by co-precipitation and sol-gel process. The method of preparation has an important effect on the physico-chemical properties of the synthesized catalysts and affects consequently both their catalytic performances in methane reforming and their resistance to poisoning by carbon deposition. In order to limit carbon formation on the catalytic surface and to increase the lifetime of catalysts during the catalytic reforming of methane, ceria supported nickel based-catalysts were doped with magnesium oxide (forming MgO-NiO solid solution) as well as with lanthanum oxide (La2O3-NiO). The obtained results show that the effect of promotion of NiO active phase by MgO and La2O3 decreases carbon deposition but also the catalytic performances. Physico-chemical properties and catalytic performances of NiO-Y2O3-ZrO2 (Ni-YSZ) prepared by the sol-gel process were compared with those of commercial (Aldrich and Jülich) materials having the same composition. The experimental results showed that materials synthesized by the sol gel method are more active in methane steam reforming than commercial catalysts while sol gel and commercial samples show similar performances in methane dry reforming. Amounts of graphitic carbon, although being higher for sol gel samples compared to commercial ones, remain low (< 2%). This carbon deposit provokes only a slight decrease of catalytic performances of sol gel prepared materials in methane dry reforming, probably by decreasing the number of active sites
224

Pt Nanophase supported catalysts and electrode systems for water electrolysis

Petrik, Leslie F. January 2008 (has links)
Doctor Scientiae - DSc / In this study novel composite electrodes were developed, in which the catalytic components were deposited in nanoparticulate form. The efficiency of the nanophase catalysts and membrane electrodes were tested in an important electrocatalytic process, namely hydrogen production by water electrolysis, for renewable energy systems. The activity of electrocatalytic nanostructured electrodes for hydrogen production by water electrolysis were compared with that of more conventional electrodes. Development of the methodology of preparing nanophase materials in a rapid, efficient and simple manner was investigated for potential application at industrial scale. Comparisons with industry standards were performed and electrodes with incorporated nanophases were characterized and evaluated for activity and durability. / South Africa
225

Energy System Modeling towards a Sustainable Future

Yiru Li (8804120) 12 October 2021 (has links)
<div>As the global population approaches 10 billion by the mid-century, supplying all the needs of the human race from the Earth’s limited land area and resources with minimized greenhouse gas emission will be the essential challenge of sustainability. In a sustainable economy, all renewable energy, in combination with carbon sources and other elements from the nature, such as water, air and land, will be used synergistically to produce building blocks for human beings. These building blocks, including electricity, heat, fuels, hydrogen, etc., will enable the production of all the end uses for human beings. The challenge for chemical engineers is to come up with processes and synergistic strategies to enable such a sustainable future.</div><div><br></div><div>Shale gas can serve as both energy resource and chemical feedstock for the transition period towards a sustainable economy, and has the potential to be a carbon source for the long term. Natural gas liquids contained in shale gas provide abundant feedstock for chemical and fuel production and could bring extra value for remote shale gas basins. Unlike current shale gas processing where large scales are preferred, simple and intensified processes with least processing steps and least pieces of equipment are favored for remote shale plays. While conventional shale gas processing usually follows a four-section hierarchy of "gas treatment - NGL recovery - NGL fractionation - NGL activation", four innovative configurations are proposed for simpler and intensified process design, including NGL co-processing, integrated NGL recovery and activation, switched NGL recovery and activation, and eliminated NGL recovery. A two-step conversion of NGLs to liquid hydrocarbons via dehydrogenation followed by oligomerization is used as an example to show how these innovative process designs evolve. Simulation results show that the loss of ethane, the NGL component with the highest concentration, could be largely reduced by the innovative process configurations. At the same time, higher yield of liquid products, fewer processing steps, reduced pieces of equipment and elimination of energy and capital-intensive units can be achieved. The intensification of process here would benefit the modularization of shale gas plants, and make it possible for distributed production of liquid hydrocarbons onsite for remote shale locations. </div><div><br></div><div>While shale gas being the carbon source for a sustainable future, renewable energy, especially solar and wind energy, will become the dominant energy resources for a sustainable economy. However, both solar and wind energy are dilute resources and harvesting them requires vast tracts of land, which could potentially compete with agricultural production for food. As a bookend case study, we investigate the land requirement for a 100% solar economy. The contiguous United States is used as an example and our analysis takes into account several issues that are usually ignored, such as the intermittent solar availability, estimation of future energy demand, actual power production from solar farms and available land types. Results show that it will be difficult for currently available land to meet the energy needs using current solar park designs for the entire contiguous United States and for nearly half of the individual states, which include well over half of the total US population. Barring radical improvements in agricultural output that could greatly reduce the land devoted to agriculture, the competition for land between energy and food seems inevitable, posing a major challenge to a future solar economy. If we extend the study to Germany, the United Kingdom and China, we could see that the challenge exists for both developed and developing countries. </div><div><br></div><div>To resolve the issue, a concept of "Aglectric" farming is proposed, where agricultural land produces electricity without diminishing existing agricultural output. Both wind turbines and photovoltaic (PV) panels can be used to generate electricity on agricultural land. While the use of the current PV panels is known to have a negative impact on crop growth, we propose several innovative PV systems using existing and new materials, innovative installation paradigms and module designs. Through extensive modeling of PV shadows throughout a day, we show that some of our designed PV systems could mitigate the loss of solar radiation while still maintaining substantial power output. Thus, it should be possible to design and install these PV systems on agricultural land to have significant power output without potentially diminishing agricultural production. We also show that PV aglectric farms alone will have the potential of realizing a 100% solar economy without land constraint. Together with regular PV parks and wind aglectric farms, PV aglectric farms will serve as an important option for a renewable future.</div><div><br></div><div>With its high energy density and zero greenhouse gas emission, hydrogen is the key energy carrier in a sustainable future. We introduce a process design strategy for the production of hydrogen by high temperature water electrolysis using concentrated solar thermal energy. At the same time, co-production of hydrogen and electricity is investigated where hydrogen can be produced by both thermochemical cycles and high temperature electrolysis. The process design features the process integration between hydrogen production and power generation. Process simulation is performed in an integrated Matlab and Aspen Plus platform. Efficiencies are analyzed for various processes.</div><div><br></div><div>Synergy is the key feature of all the studies in the dissertation. Process intensification for shale gas conversion and process integration for solar hydrogen production are examples of synergy at the process level. Coproduction of hydrogen and electricity and coproduction of electricity and food are examples of synergy at the building block level. Potential synergistic use of solar, wind and shale resources is an example of synergy at the resource level. Synergy is the keyword of the sustainable future we are pursuing.</div>
226

Návrh energetických systémů využívajících vodík jako palivo / Design of Energy Systems Using Hydrogen as Fuel

Slováček, Adam January 2012 (has links)
The subject of diploma thesis is to gather knowledge in the production and use of hydrogen. This work is devoted to a comparison of the previously existing processes for producing hydrogen, where the vast majority is filled of fossil fuel. Another section is devoted to new materials for the study based on a number of selected patents and the experiment promising new method for decomposition of water. Based on available data will be carried out energy balance and consequently will be drafted energy system using hydrogen as fuel. In conclusion will be future possibilities evaluated in the field of hydrogen energy.
227

Nanokristalline und laserpuls-strukturierte Ni-Elektroden für die alkalische Wasserelektrolyse

Rauscher, Thomas 08 November 2021 (has links)
Das Ziel der vorliegenden Arbeit ist es, nanokristalline und laserpuls-strukturierte Elektroden für die alkalische Wasserelektrolyse zu untersuchten und hinsichtlich ihrer elektrokatalytischen Eigenschaft zu bewerten. Dabei besteht die Hauptaufgabe in der Aufklärung der Zusammenhänge zwischen der elektrokatalytischen Aktivität und der Struktur der Elektroden. Es soll der Effekt der nanokristallinen Kristallstruktur auf die Elektrodenaktivität aufgeklärt werden. Zudem stellt die elektrokatalytische Wirkung von Mo in Ni-Elektroden für die Wasserstoffentwicklungsreaktion eine zentrale Untersuchung in der vorliegenden Arbeit dar. Für die Sauerstoffentwicklungsreaktion soll der Einfluss von Fe in nanokristallinen Ni-Materialien näher analysiert und unter industriell relevanten Betriebsbedingungen bewertet werden. Zum anderen richtet sich der Fokus auf die Nutzung eines Ultrakurzpulslasers zur Strukturierung von Ni-Elektrodenoberflächen. Besonderes Augenmerk wird auf die Korrelation zwischen den individuellen Strukturmerkmalen, der erzielten Oberflächenvergrößerung und der elektrokatalytischen Aktivität bezüglich der Wasserstoffentwicklung gelegt. Zudem werden Langzeituntersuchungen bei Stromdichten von bis 1 A/cm² durchgeführt, um die Stabilität zu bewerten und Degradationsmechanismen aufzuklären.
228

Hydrogen production from irradiated aluminum hydroxide and oxyhydroxide / Production d'hydrogène par radiolyse de l'eau de structure des hydroxides et oxohydroxides d'aluminium

Kaddissy, Josiane 03 October 2016 (has links)
Dans le cadre de l’entreposage et du stockage des colis de déchets nucléaires et du transport de combustibles usés, nous nous sommes intéressés par l’étude de la production d’hydrogène de deux produits de corrosion de l’aluminium : l’hydroxyde d’aluminium (Al(OH)3) et l’oxyhydroxyde d’aluminium (AlO(OH)).La production du dihydrogène par irradiation de ces matériaux a été étudiée en fonction de la taille et de la structure que ce soit à température ambiante ou après. Afin d’avoir une meilleur compréhension des mécanismes de production de ce gaz, les défauts créés par irradiation ont été caractérisés en utilisant la Résonnance Paramagnétique Electronique (RPE). Différentes sources d’irradiation ont été utilisées comme le rayonnement Gamma, les électrons accélérés et les ions lourds. Dans un second temps, l’effet de l’hydratation de surface des matériaux a été également étudié. Enfin, l’effet de la présence d’impuretés sur la production de H2 a été brièvement étudié. / Dihydrogen production is a critical issue for the current management of nuclear wastes. One potential source of hydrogen generation is the radiolysis of hydrated mineral phases encountered in the nuclear waste transportation and storage casks. We chose to study aluminum hydroxide (Al(OH)3) (Bayerite) and oxyhydroxides (AlOOH) (Boehmite) as model compounds. The determination of molecular hydrogen production was evaluated with respect to structure and particle size at room temperature and after annealing. In order to have a better understanding of the mechanisms and to identify the precursors of molecular hydrogen, we studied the irradiation defects and their stabilities using Electron Paramagnetic Resonance (EPR). The effect of adsorbed water and structural water on the molecular hydrogen production was studied. Different radiation sources were used such as Gamma radiation, electron beam radiations and heavy ions. In the last part, preliminary results related to the impact of impurities on hydrogen production are presented.
229

Production d'hydrogène à basse température par reformage à sec et reformage oxydant du méthane sur divers catalyseurs à base de nickel / Hydrogen production at low temperature by dry reforming and oxidative dry reforming of methane on various Ni-based catalysts

Wei, Yaqian 20 December 2017 (has links)
Afin de développer une économie basée sur l'hydrogène, il est souhaitable de pouvoir le produire à partir de biogaz (CH4 and CO2) ou de gaz à effet de serre (GES). Le reformage à sec (DRM) et le reformage oxydant du méthane (ODRM) sont des voies prometteuses pour produire H2 et CO à partir des GES et suscitent une grande attention en raison de préoccupations environnementales. Ces réactions ont été étudiées à basse température (600 -700 ° C) sur des oxydes mixtes CeNiX(AlZ)OY, NiXMg2AlOY, et des catalyseurs supportés Ni/SBA-15. Diverses techniques physico-chimiques ont été utilisées pour caractériser les catalyseurs, tels que DRX, XPS, TPR et Raman. L’influence de différents paramètres a été examinée, telles que la température de réaction, le prétraitement sous H2, la teneur en Ni, la masse de catalyseur et les concentrations en réactifs. En particulier, les réactions ont été étudiées à 600 °C, sans dilution des réactifs et sur 10 mg de catalyseur. Les meilleures activités catalytiques et sélectivités sont obtenues sur des catalyseurs partiellement réduits à température appropriée. L'addition d'O2 augmente la conversion du CH4 mais diminue la conversion du CO2, et O2/CH4 =0,3 apparaît comme la condition optimisée en raison de l'activité et de la sélectivité élevées et de la faible formation de carbone. Enfin, un site actif impliquant des espèces Ni en interaction forte avec d'autres cations est proposé. Il est obtenu sur un catalyseur partiellement réduit formé pendant le traitement in situ sous H2 ou sous flux de CH4, il implique des lacunes anioniques, des espèces O2- et des cations / In order to develop a sustainable hydrogen economy, it is desirable to produce hydrogen from biogas (CH4 and CO2) or greenhouses gases (GHG). Dry reforming (DRM) and oxidative dry reforming of methane (ODRM) are promising routes to produce H2 and CO from GHG and have received much attention due environment concerns. Herein, these reactions were studied at low temperatures (600 -700 °C) over CeNiX(AlZ)OY, NiXMg2AlOY mixed oxides and Ni/SBA-15 supported catalysts. Various physico-chemical techniques were employed to characterize the catalysts, such as XRD, XPS, H2-TPR and Raman. The influences of different parameters were examined, such as reaction temperature, pretreatment in H2, Ni content, mass of catalyst and reactants concentration, in particular, at 600°C in harsh conditions (feed gases without dilution) on low mass of catalyst (10 mg). The best catalytic activity and selectivity are obtained on partially reduced catalysts at appropriate temperature. The addition of O2 increases CH4 conversion but decreases CO2 conversion, and O2/CH4 = 0.3 could be the optimized condition due to high activity, selectivity and low carbon formation. Finally, an active site involving Ni species in close interactions with other cations is proposed. It is related to a partially reduced catalyst involving anionic vacancies, O2- species, and cations, which is formed during the in situ H2 treatment or CH4 flow
230

A Continuous Electrochemical Process to Convert Lignin to Low Molecular Weight Aromatic Compounds and Cogeneration of Hydrogen

Naderinasrabadi, Mahtab 02 June 2020 (has links)
No description available.

Page generated in 0.0998 seconds