Spelling suggestions: "subject:"hydrogenase"" "subject:"dehydrogenases""
1 |
The biochemical and genetic analysis of hydrogenase in Azotobacter chroococcumFord, Christopher Michael January 1988 (has links)
No description available.
|
2 |
Reactivity and photochemistry of the active site of FeFe-hydrogenase / Réactivité et photochimie du site actif de l'hydrogénase FeFeSensi, Matteo 08 November 2017 (has links)
Les hydrogénases FeFe sont des métalloenzymes qui catalysent l'oxydation et la production de H$_2$. Le cycle catalytique et de nombreux aspects de la réactivité de ces enzymes, y compris l'inactivation aérobie et anaérobie, ne sont toujours pas complètement compris. J'ai développé une nouvelle technique appelée photo-électrochimie directe et je l'ai utilisée pour étudier l'effet de l'irradiation sur la cinétique d'inhibition par le CO de trois hydrogénases FeFe distinctes. J'ai déterminé le spectre d'action de la photo-dissociation de l'inhibiteur CO et j'ai décrit le processus au niveau QM pour la première fois, en obtenant un bon accord entre les expériences et la théorie.J'ai également étudié la photoinhibition de l'enzyme. J'ai effectué des expériences de photoélectrochimiques en irradiant la protéine avec des diodes laser monochromatiques dans le domaine de la lumière visible, une lampe halogène ou une lampe au xénon et j'ai observé que les hydrogénases FeFe de C. reinhardtii et C. acetobutylicum sont irréversiblement inactivées par la lumière UVB. En utilisant la DFT et la TDDFT, j'ai conclu que les étapes initiales de la photoinhibition consistent en la photodissociation d'un ligand carbonyle intrinsèque du site actif, suivie de la formation d'une espèce inactive stable.J'ai aussi effectué des expériences préliminaires pour examiner l'effet de la lumière sur l'activité de deux autres métalloenzymes: la CO déshydrogénase et la hydrogénase NiFe.Mes résultats illustrent la force de l'approche méthodologique qui combine électrochimie directe et TDDFT, et apportent de nouvelles connaissances sur les propriétés chimiques et photochimiques de plusieurs métalloenzymes. / FeFe hydrogenases are metalloenzymes that catalyze the oxidation and production of H$_2$. The catalytic cycle and many aspects of the reactivity of these enzymes, including their aerobic and anaerobic inactivation, are still the subjects of intense investigations. I developed a new technique called direct photo-electrochemistry and I used it to study the effect of monochromatic irradiation in the visible range on the kinetics of inhibition by CO of three distinct FeFe hydrogenases. I determined the action spectrum of the photo-dissociation of the inhibitor CO and I described the process at the QM level for the first time, obtaining good agreement between experiments and theory.I also studied the photoinhibition of the enzyme. I carried out photoelectrochemistry experiments irradiating the protein with monochromatic visible light laser diodes, a halogen lamp or a xenon lamp, and I observed that the FeFe hydrogenases from C. reinhardtii and C. acetobutylicum are irreversibly inactivated by UVB light. Using DFT and TDDFT, I concluded that the initial steps of photoinhibition consist in the photodissociation of one carbonyl intrinsic ligand of the active site, followed by the formation of a stable inactive species.I also performed preliminary experiments to examine the effect of light on the activity of two other metalloenzymes: Carbon monoxide dehydrogenase (CODH) and NiFe-hydrogenase.My results illustrate the strength of the methodological approach that combines direct electrochemistry and TDDFT, and reveal new insights in the chemical and photochemical properties of several metalloenzymes.
|
3 |
Identifikace vybraných bakterií v sýrech pomocí PCR / PCR identification of selected bacteria in cheesesGregušová, Barbora January 2009 (has links)
This work is focused on identification and species specification of a collection of 44 clostridial strains using molecular-genetic methods. DNA of bacteria isolated from late-blowing defected cheeses was used. The purified DNA was diluted to 10 ng/µl and its ability to be amplified was verified by PCR with universal primers. By genus-specific PCR was proved that DNA of all samples belongs to Clostridium genus. Based on species-specific PCR reactions, it was determined that 7 strains belong to C. butyricum and 12 strains belong to C. tyrobutyricum. 15 strains were positively detected in both species-specific PCRs and therefore identified as mixed cultures. Another 10 strains were not classified into tested species. Strains with the gene encoding the enzyme hydrogenase hydA were searched using PCR. Specific PCR products for this gene were detected in 30 strains of the analysed collection. Especially intense were the amplicons by all strains belonging to C. butyricum species.
|
4 |
Mimicking the Outer Coordination Sphere in [FeFe]-Hydrogenase Active Site Models : From Extended Ligand Design to Metal-Organic FrameworksPullen, Sonja January 2017 (has links)
Biomimetic catalysis is an important research field, as a better understanding of nature´s powerful toolbox for the conversion of molecules can lead to technological progress. [FeFe]-hydrogenases are very efficient catalysts for hydrogen production. These enzymes play a crucial role in the metabolism of green algae and certain cyanobacteria. Their active site consists of a diiron complex that is embedded in an interactive protein matrix. In this thesis, two pathways for mimicking the outer coordination sphere effects resulting from the protein matrix are explored. The first is the construction of model complexes containing phosphine ligands that are coordinated to the iron center as well as covalently linked to the bridging ligand of the complex. The effect of such linkers is an increased energy barrier for the rotation of the Fe(CO2)(PL3)-subunit, which potentially could stabilize a terminal hydride that is an important intermediate in the proton reduction cycle. The second pathway follows the incorporation of [FeFe]-hydrogenase active site model complexes into metal-organic frameworks (MOFs). Resulting MOF-catalysts exhibit increased photocatalytic activity compared to homogenous references due to a stabilizing effect on catalytic intermediates by the surrounding framework. Catalyst accessibility within the MOF and the influence of the framework on chemical reactivity are examined in the work presented. Furthermore, an initial step towards application of MOF-catalysts in a device was made by interfacing them with electrodes. The work of this thesis highlights strategies for the improvement of biomimetic model catalysts and the knowledge gained can be transferred to other systems mimicking the function of enzymes.
|
5 |
Contribution à l'étude complexes bio-inspirés du site actif des hydrogénases [FeFe] / Contribution to the study of bio-inspired models of the active site of [FeFe]- hydrogenasesMohamed Bouh, Salma 12 December 2017 (has links)
Les hydrogénases [FeFe] sont des métalloenzymes capables de catalyser de façon réversible la production et l’oxydation du dihydrogène. Depuis que la structure du site actif des hydrogénases [FeFe] a été déterminée, de nombreux modèles bio-inspirés ont été élaborés et étudiés en vue de comprendre et de reproduire le fonctionnement de cette classe d’enzyme. Le site actif des hydrogénases [FeFe], le cluster-H, présente un état entatique caractérisé par une conformation particulière permettant d’activer efficacement la conversion H+/H2. Dans la littérature, très peu de modèles reproduisant une telle conformation dans l’état réduit Hred (FeIFeI) du site actif ont été décrits. Notre équipe a obtenu récemment un complexe FeIFeI de formule [Fe2(CO)4(ҡ 2-dmpe)(μ-adtBn)] (adtBn= {SCH2}2NCH2C6H5, dmpe = (CH3)2PCH2-CH2P(CH3)2), présentant une conformation ‘inversée’, à l’état solide, permettant de mimer la géométrie particulière du cluster-H. Cette conformation est stabilisée dans ce dérivé par la présence d’un pont dithiolate encombré, d’une liaison agostique et par la coordination dissymétrique d'un ligand bidentate bon σ-donneur. Les travaux de cette thèse ont été consacrés à l’étude du comportement électrochimique en oxydation de ce composé, [Fe2(CO)4(ҡ2-dmpe)(μ-adtBn)], dans différents solvants et en présence de substrats, comme CO, RNC et P(OMe)3, en vue de comprendre les mécanismes impliqués dans ces processus redox. Les oxydations chimiques du complexe [Fe2(CO)4(ҡ2-dmpe)(μ-adtBn)] ont permis de compléter l’identification des espèces formées qui ont été caractérisées par différentes méthodes spectroscopiques (IR, RMN) et par diffraction des rayons X. / [FeFe]-Hydrogenases are metalloenzymes having the capacity to catalyze efficiently both the production of H2 and its oxidation. Since the structure of the active site of [FeFe]-Hydrogenases has been determined, many bio-inspired models have been synthesized and studied to understand and to mimick the functioning of this class of enzyme. The active site of the [FeFe]-hydrogenases, the Hcluster, presents an entatic state characterized by a particular conformation that allows an efficient H+/H2 conversion. Very few models mimicking such a conformation in the reduced state, Hred (FeIFeI), of the active site have been described in the literature. Our group recently obtained a FeIFeI complex [Fe2(CO)4(k2-dmpe)(μ-adtBn)] (adtBn = {SCH2}2NCH2C6H5, dmpe = (CH3)2PCH2-CH2P(CH3)2), having an 'inverted' conformation, in the solid state, that mimicks the particular geometry of the H-cluster. This conformation is stabilized in this derivative by the presence of a crowded dithiolate bridge, an agostic interaction and the dissymmetrical coordination of a chelating good σ-donor ligand. The works in this thesis have been devoted to the study of the electrochemical properties in oxidation of the complex [Fe2(CO)4(k2-dmpe)(μ-adtBn)] in various solvents and in the presence of substrates, such as CO, RNC, P(OMe)3, in order to understand the mechanisms involved in these redox processes. The chemical oxidations of the complex [Fe2(CO)4(k2-dmpe)(μ-adtBn)] have been also performed in order to identify the species formed by oxidation. They were characterized using various spectroscopic methods (IR, NMR) and X-ray diffraction.
|
6 |
Etude pluridisciplinaire d'une hydrogénase : mécanisme et optimisation des propriétés catalytiques / multidisciplinary study of a hydrogenase : mechanism and optimization of catalytic propertiesAbou Hamdan, Abbas 06 November 2013 (has links)
Les hydrogénases sont des métalloenzymes qui catalysent la conversion réversible du dihydrogène en protons et en électrons. Durant ma thèse, je me suis focalisé sur certains aspects du fonctionnement de l’hydrogénase à [NiFe] hétérodimérique de Desulfovibrio fructosovorans. Nous avons montré que contrairement au mécanisme communément admis d’inactivation aérobie de l’enzyme, l’O2 n’est pas incorporé en tant que ligand au niveau du site actif mais agit plutôt comme un simple oxydant. Ce résultat remet en question le mécanisme proposé pour expliquer la tolérance naturelle à l’O2 de certaines hydrogénases. L’analyse à l’aide d’un modèle cinétique des voltamogrammes cycliques complexes obtenus avec 16 variants a montré que les vitesses d’(in)activation en conditions anaérobies peuvent être accélérées de plusieurs ordres de grandeurs. Nous avons aussi montré et expliqué la corrélation entre ces vitesses et la tolérance à l’O2. Nous avons étudié une série de mutants qui produisent H2 beaucoup plus lentement que l’enzyme sauvage. Nous avons montré que la vitesse de cette réaction est déterminée par celle de l’étape de diffusion du H2, qui est lente dans les mutants. Finalement, nous nous sommes intéressés à une thréonine appartenant à la voie putative de transfert des protons. Nous avons démontré que cet acide aminé est effectivement impliqué dans le transport des protons. Il joue aussi un rôle crucial dans la stabilisation des intermédiaires formés au cours du cycle catalytique et probablement dans la détermination des vitesses de transfert électronique et de diffusion à travers le canal. / Hydrogenases are metalloenzymes which catalyse the reversible conversion of dihydrogen into protons and electrons. In my work, I focused on some aspects of the catalytic mechanism of the heterodimeric NiFe hydrogenase from Desulfovibrio fructosovorans. We demonstrated that, contrary to the commonly accepted mechanism of aerobic inactivation, the attacking O2 is not incorporated as an active site ligand but rather acts as an electron acceptor. This finding calls for a re-examination of the mechanism for O2 tolerance of the natural O2 tolerant NiFe hydrogenases. We also described a simple analytical model that we used to analyse the complex voltammetric signals of 16 mutants obtained by substituting an amino acid near the active site. We demonstrated that this substitution can accelerate anaerobic inactivation and reactivation by up to three orders of magnitude. We also demonstrated and explained the correlation between these rates and O2-tolerance. We studied mutants whose H2-production activity is impaired. We found that the rate limiting step of this reaction is the diffusion of hydrogen out of the enzyme, through the hydrophobic channel. Finally, we focused on a threonine belonging to the putative proton transfer pathway. We demonstrated that this amino acid is indeed implicated in proton transport. It may also play a crucial role in the stabilization of intermediates formed during the catalytic cycle, and probably also in determining the rate of electron transfer and diffusion along the gas channel.
|
7 |
Improvements in Fermentative Hydrogen Production through Physiological Manipulation and Metabolic EngineeringAbo-Hashesh, Mona 12 1900 (has links)
La production biologique d'hydrogène (H2) représente une technologie possible pour la production à grande échelle durable de H2 nécessaire pour l'économie future de l'hydrogène. Cependant, l'obstacle majeur à l'élaboration d'un processus pratique a été la faiblesse des rendements qui sont obtenus, généralement autour de 25%, bien en sous des rendements pouvant être atteints pour la production de biocarburants à partir d'autres processus. L'objectif de cette thèse était de tenter d'améliorer la production d'H2 par la manipulation physiologique et le génie métabolique.
Une hypothèse qui a été étudiée était que la production d'H2 pourrait être améliorée et rendue plus économique en utilisant un procédé de fermentation microaérobie sombre car cela pourrait fournir la puissance supplémentaire nécessaire pour une conversion plus complète du substrat et donc une production plus grande d'H2 sans l'aide de l'énergie lumineuse. Les concentrations optimales d’O2 pour la production de H2 microaérobie ont été examinées ainsi que l'impact des sources de carbone et d'azote sur le processus. La recherche présentée ici a démontré la capacité de Rhodobacter capsulatus JP91 hup- (un mutant déficient d’absorption-hydrogénase) de produire de l'H2 sous condition microaérobie sombre avec une limitation dans des quantités d’O2 et d'azote fixé. D'autres travaux devraient être entrepris pour augmenter les rendements d'H2 en utilisant cette technologie.
De plus, un processus de photofermentation a été créé pour améliorer le rendement d’H2 à partir du glucose à l'aide de R. capsulatus JP91 hup- soit en mode non renouvelé (batch) et / ou en conditions de culture en continu. Certains défis techniques ont été surmontés en mettant en place des conditions adéquates de fonctionnement pour un rendement accru d'H2. Un rendement maximal de 3,3 mols de H2/ mol de glucose a été trouvé pour les cultures en batch tandis que pour les cultures en continu, il était de 10,3 mols H2/ mol de glucose, beaucoup plus élevé que celui rapporté antérieurement et proche de la valeur maximale théorique de 12 mols H2/ mol de glucose. Dans les cultures en batch l'efficacité maximale de conversion d’énergie lumineuse était de 0,7% alors qu'elle était de 1,34% dans les cultures en continu avec un rendement de conversion maximum de la valeur de chauffage du glucose de 91,14%. Diverses autres approches pour l'augmentation des rendements des processus de photofermentation sont proposées. Les résultats globaux indiquent qu'un processus photofermentatif efficace de production d'H2 à partir du glucose en une seule étape avec des cultures en continu dans des photobioréacteurs pourrait être développé ce qui serait un processus beaucoup plus prometteur que les processus en deux étapes ou avec les co-cultures étudiés antérieurément.
En outre, l'expression hétérologue d’hydrogenase a été utilisée comme une stratégie d'ingénierie métabolique afin d'améliorer la production d'H2 par fermentation. La capacité d'exprimer une hydrogénase d'une espèce avec des gènes de maturation d'une autre espèce a été examinée. Une stratégie a démontré que la protéine HydA orpheline de R. rubrum est fonctionnelle et active lorsque co-exprimée chez Escherichia coli avec HydE, HydF et HydG provenant d'organisme différent. La co-expression des gènes [FeFe]-hydrogénase structurels et de maturation dans des micro-organismes qui n'ont pas une [FeFe]-hydrogénase indigène peut entraîner le succès dans l'assemblage et la biosynthèse d'hydrogénase active. Toutefois, d'autres facteurs peuvent être nécessaires pour obtenir des rendements considérablement augmentés en protéines ainsi que l'activité spécifique des hydrogénases recombinantes.
Une autre stratégie a consisté à surexprimer une [FeFe]-hydrogénase très active dans une souche hôte de E. coli. L'expression d'une hydrogénase qui peut interagir directement avec le NADPH est souhaitable car cela, plutôt que de la ferrédoxine réduite, est naturellement produit par le métabolisme. Toutefois, la maturation de ce type d'hydrogénase chez E. coli n'a pas été rapportée auparavant. L'opéron hnd (hndA, B, C, D) de Desulfovibrio fructosovorans code pour une [FeFe]-hydrogénase NADP-dépendante, a été exprimé dans différentes souches d’E. coli avec les gènes de maturation hydE, hydF et hydG de Clostridium acetobutylicum. L'activité de l'hydrogénase a été détectée in vitro, donc une NADP-dépendante [FeFe]-hydrogénase multimérique active a été exprimée avec succès chez E. coli pour la première fois. Les recherches futures pourraient conduire à l'expression de cette enzyme chez les souches de E. coli qui produisent plus de NADPH, ouvrant la voie à une augmentation des rendements d'hydrogène via la voie des pentoses phosphates. / Biological hydrogen (H2) production represents a possible technology for the large scale sustainable production of H2 needed for a future hydrogen economy. However, the major obstacle to developing a practical process has been the low yields that are obtained, typically around 25%, well below those achievable for the production of other biofuels from the same feedstock. The goal of this thesis was to improve H2 production through physiological manipulation and metabolic engineering.
One investigated hypothesis was that H2 production could be improved and made more economical by using a microaerobic dark fermentation process since this could provide the extra reducing power required for driving substrate conversion to completion and hence more H2 production might be obtained without using light energy. The optimal O2 concentrations for microaerobic H2 production were examined as well as the impact of carbon and nitrogen sources on the process. The research reported here proved the capability of Rhodobacter capsulatus JP91 hup- (an uptake-hydrogenase deficient mutant) to produce H2 under microaerobic dark conditions with limiting amounts of O2 and fixed nitrogen. Further work should be undertaken to increase H2 yields using this technology.
In addition, a photofermentation process was established to improve H2 yield from glucose using R. capsulatus JP91 hup- strain either in batch and/or continuous culture conditions. Some technical challenges in establishing the proper operational conditions for increased H2 yield were overcome. A maximum yield of 3.3 mols of H2/ mol of glucose was found for batch cultures whereas in continous cultures it was 10.3 mols H2/ mol glucose, much higher than previously reported and close to the theoretical maximum value of 12 mols H2/ mol glucose. In batch cultures the maximum light conversion efficiency was 0.7% whereas it was 1.34% in continuous cultures with a maximum conversion efficiency of the heating value of glucose of 91.14%. Various approaches to further increasing yields in photofermentation processes are proposed. The overall results suggest that an efficient single stage photofermentative H2 production process from glucose using continuous cultures in photobioreactors could be developed which would be a much more promising alternative process to the previously studied two stage photofermentation or co-culture approaches.
Furthermore, the heterologous expression of hydrogenases was used as a metabolic engineering strategy to improve fermentative H2 production. The capability of expressing a hydrogenase from one species with the maturation genes from another was examined. One strategy demonstrated that the orphan hydA of R. rubrum is functional and active when co-expressed in E. coli with hydE, hydF and hydG from different organisms. Co-expression of the [FeFe]-hydrogenase structural and maturation genes in microorganisms that lack a native [FeFe]-hydrogenase can successfully result in the assembly and biosynthesis of active hydrogenases. However, other factors may be required for significantly increased protein yields and hence the specific activity of the recombinant hydrogenases.
Another strategy was to overexpress one of the highly active [FeFe]-hydrogenases in a suitable E. coli host strain. Expression of a hydrogenase that can directly interact with NADPH is desirable as this, rather than reduced ferredoxin, is naturally produced by its metabolism. However, the successful maturation of this type of hydrogenase in E. coli had not been previously reported. The Desulfovibrio fructosovorans hnd operon (hndA, B, C, and D genes), encoding a NADP-dependent [FeFe]-hydrogenase, was expressed in various E. coli strains with the maturation genes hydE, hydF and hydG of Clostridium acetobutylicum. Hydrogenase activities were detected in vitro, thus a multi-subunit NADP-dependent [FeFe]-active hydrogenase was successfully expressed and matured in E. coli for the first time. Future research could lead to the expression of this hydrogenase in E. coli host strains that overproduce NADPH, setting the stage for increased hydrogen yields via the pentose phosphate pathway.
|
8 |
Avaliação do efeito da expressão heteróloga da proteorrodopsina de SAR86 em bactérias Gram-negativas na otimização da produção de hidrogênio. / Evaluation of the effect of heterologous expression of the SAR86 proteorhodopsin in gram-negative bactéria on hydrogen production optimization.Kuniyoshi, Taís Mayumi 09 June 2015 (has links)
O aproveitamento da energia luminosa por bactérias que produzem hidrogenases poderia aumentar a eficiência do processo de produção de biohidrogênio. Neste trabalho, foi realizada a clonagem do gene que codifica a proteorrodopsina (PR) do isolado metagenômico SAR86 num plasmídeo de expressão para bactérias Gram-negativas. PR é uma proteína ligada ao cromóforo retinal, que, sob iluminação, promove o efluxo de prótons através da membrana celular. O excesso de prótons na face externa da membrana pode servir como substrato para a hidrogenase, resultando em maior eficiência na produção de hidrogênio (2H+ + 2e→ H2). O plasmídeo contendo o gene da PR foi utilizado na transformação genética das bactérias Cupriavidus necator e Escherichia coli, que produzem diversas hidrogenases. Enquanto a PR não se mostrou funcional em C. necator, na linhagem recombinante de E. coli, cultivada em presença de luz e retinal, foi obtido um aumento de até 2,17 vezes na produção de H2 em relação ao cultivo no escuro, desde que a linhagem estivesse produzindo a hidrogenase endógena HYD-4. / The utilization of light energy by hydrogenase producing bacteria could increase the efficiency of the biohydrogen production process. In the present work, the gene coding for proteorhodopsin (PR) of the SAR86 metagenomic lineage was cloned in an expression plasmid for Gram-negative bacteria. PR is an apoprotein linked to the chromophore retinal, which, upon illumination, promotes proton efflux across the cell membrane. The excess of protons on the plasma membrane surface may serve as a substrate for hydrogenases, resulting in a higher efficiency of hydrogen production (2H+ + 2e→ H2). The plasmid containing the PR gene was used to transform the Gram-negative bacteria Cupriavidus necator and Escherichia coli which produce several hydrogenases. Whereas PR did not display functionality in C. necator, in the recombinant E. coli cells, grown under illumination in the presence of retinal, an enhancement up to 2.17 fold in H2 production was found, relative to cells grown under darkness, provided that the cells were expressing the endogenous HYD-4 hydrogenase.
|
9 |
Improvements in Fermentative Hydrogen Production through Physiological Manipulation and Metabolic EngineeringAbo-Hashesh, Mona 12 1900 (has links)
La production biologique d'hydrogène (H2) représente une technologie possible pour la production à grande échelle durable de H2 nécessaire pour l'économie future de l'hydrogène. Cependant, l'obstacle majeur à l'élaboration d'un processus pratique a été la faiblesse des rendements qui sont obtenus, généralement autour de 25%, bien en sous des rendements pouvant être atteints pour la production de biocarburants à partir d'autres processus. L'objectif de cette thèse était de tenter d'améliorer la production d'H2 par la manipulation physiologique et le génie métabolique.
Une hypothèse qui a été étudiée était que la production d'H2 pourrait être améliorée et rendue plus économique en utilisant un procédé de fermentation microaérobie sombre car cela pourrait fournir la puissance supplémentaire nécessaire pour une conversion plus complète du substrat et donc une production plus grande d'H2 sans l'aide de l'énergie lumineuse. Les concentrations optimales d’O2 pour la production de H2 microaérobie ont été examinées ainsi que l'impact des sources de carbone et d'azote sur le processus. La recherche présentée ici a démontré la capacité de Rhodobacter capsulatus JP91 hup- (un mutant déficient d’absorption-hydrogénase) de produire de l'H2 sous condition microaérobie sombre avec une limitation dans des quantités d’O2 et d'azote fixé. D'autres travaux devraient être entrepris pour augmenter les rendements d'H2 en utilisant cette technologie.
De plus, un processus de photofermentation a été créé pour améliorer le rendement d’H2 à partir du glucose à l'aide de R. capsulatus JP91 hup- soit en mode non renouvelé (batch) et / ou en conditions de culture en continu. Certains défis techniques ont été surmontés en mettant en place des conditions adéquates de fonctionnement pour un rendement accru d'H2. Un rendement maximal de 3,3 mols de H2/ mol de glucose a été trouvé pour les cultures en batch tandis que pour les cultures en continu, il était de 10,3 mols H2/ mol de glucose, beaucoup plus élevé que celui rapporté antérieurement et proche de la valeur maximale théorique de 12 mols H2/ mol de glucose. Dans les cultures en batch l'efficacité maximale de conversion d’énergie lumineuse était de 0,7% alors qu'elle était de 1,34% dans les cultures en continu avec un rendement de conversion maximum de la valeur de chauffage du glucose de 91,14%. Diverses autres approches pour l'augmentation des rendements des processus de photofermentation sont proposées. Les résultats globaux indiquent qu'un processus photofermentatif efficace de production d'H2 à partir du glucose en une seule étape avec des cultures en continu dans des photobioréacteurs pourrait être développé ce qui serait un processus beaucoup plus prometteur que les processus en deux étapes ou avec les co-cultures étudiés antérieurément.
En outre, l'expression hétérologue d’hydrogenase a été utilisée comme une stratégie d'ingénierie métabolique afin d'améliorer la production d'H2 par fermentation. La capacité d'exprimer une hydrogénase d'une espèce avec des gènes de maturation d'une autre espèce a été examinée. Une stratégie a démontré que la protéine HydA orpheline de R. rubrum est fonctionnelle et active lorsque co-exprimée chez Escherichia coli avec HydE, HydF et HydG provenant d'organisme différent. La co-expression des gènes [FeFe]-hydrogénase structurels et de maturation dans des micro-organismes qui n'ont pas une [FeFe]-hydrogénase indigène peut entraîner le succès dans l'assemblage et la biosynthèse d'hydrogénase active. Toutefois, d'autres facteurs peuvent être nécessaires pour obtenir des rendements considérablement augmentés en protéines ainsi que l'activité spécifique des hydrogénases recombinantes.
Une autre stratégie a consisté à surexprimer une [FeFe]-hydrogénase très active dans une souche hôte de E. coli. L'expression d'une hydrogénase qui peut interagir directement avec le NADPH est souhaitable car cela, plutôt que de la ferrédoxine réduite, est naturellement produit par le métabolisme. Toutefois, la maturation de ce type d'hydrogénase chez E. coli n'a pas été rapportée auparavant. L'opéron hnd (hndA, B, C, D) de Desulfovibrio fructosovorans code pour une [FeFe]-hydrogénase NADP-dépendante, a été exprimé dans différentes souches d’E. coli avec les gènes de maturation hydE, hydF et hydG de Clostridium acetobutylicum. L'activité de l'hydrogénase a été détectée in vitro, donc une NADP-dépendante [FeFe]-hydrogénase multimérique active a été exprimée avec succès chez E. coli pour la première fois. Les recherches futures pourraient conduire à l'expression de cette enzyme chez les souches de E. coli qui produisent plus de NADPH, ouvrant la voie à une augmentation des rendements d'hydrogène via la voie des pentoses phosphates. / Biological hydrogen (H2) production represents a possible technology for the large scale sustainable production of H2 needed for a future hydrogen economy. However, the major obstacle to developing a practical process has been the low yields that are obtained, typically around 25%, well below those achievable for the production of other biofuels from the same feedstock. The goal of this thesis was to improve H2 production through physiological manipulation and metabolic engineering.
One investigated hypothesis was that H2 production could be improved and made more economical by using a microaerobic dark fermentation process since this could provide the extra reducing power required for driving substrate conversion to completion and hence more H2 production might be obtained without using light energy. The optimal O2 concentrations for microaerobic H2 production were examined as well as the impact of carbon and nitrogen sources on the process. The research reported here proved the capability of Rhodobacter capsulatus JP91 hup- (an uptake-hydrogenase deficient mutant) to produce H2 under microaerobic dark conditions with limiting amounts of O2 and fixed nitrogen. Further work should be undertaken to increase H2 yields using this technology.
In addition, a photofermentation process was established to improve H2 yield from glucose using R. capsulatus JP91 hup- strain either in batch and/or continuous culture conditions. Some technical challenges in establishing the proper operational conditions for increased H2 yield were overcome. A maximum yield of 3.3 mols of H2/ mol of glucose was found for batch cultures whereas in continous cultures it was 10.3 mols H2/ mol glucose, much higher than previously reported and close to the theoretical maximum value of 12 mols H2/ mol glucose. In batch cultures the maximum light conversion efficiency was 0.7% whereas it was 1.34% in continuous cultures with a maximum conversion efficiency of the heating value of glucose of 91.14%. Various approaches to further increasing yields in photofermentation processes are proposed. The overall results suggest that an efficient single stage photofermentative H2 production process from glucose using continuous cultures in photobioreactors could be developed which would be a much more promising alternative process to the previously studied two stage photofermentation or co-culture approaches.
Furthermore, the heterologous expression of hydrogenases was used as a metabolic engineering strategy to improve fermentative H2 production. The capability of expressing a hydrogenase from one species with the maturation genes from another was examined. One strategy demonstrated that the orphan hydA of R. rubrum is functional and active when co-expressed in E. coli with hydE, hydF and hydG from different organisms. Co-expression of the [FeFe]-hydrogenase structural and maturation genes in microorganisms that lack a native [FeFe]-hydrogenase can successfully result in the assembly and biosynthesis of active hydrogenases. However, other factors may be required for significantly increased protein yields and hence the specific activity of the recombinant hydrogenases.
Another strategy was to overexpress one of the highly active [FeFe]-hydrogenases in a suitable E. coli host strain. Expression of a hydrogenase that can directly interact with NADPH is desirable as this, rather than reduced ferredoxin, is naturally produced by its metabolism. However, the successful maturation of this type of hydrogenase in E. coli had not been previously reported. The Desulfovibrio fructosovorans hnd operon (hndA, B, C, and D genes), encoding a NADP-dependent [FeFe]-hydrogenase, was expressed in various E. coli strains with the maturation genes hydE, hydF and hydG of Clostridium acetobutylicum. Hydrogenase activities were detected in vitro, thus a multi-subunit NADP-dependent [FeFe]-active hydrogenase was successfully expressed and matured in E. coli for the first time. Future research could lead to the expression of this hydrogenase in E. coli host strains that overproduce NADPH, setting the stage for increased hydrogen yields via the pentose phosphate pathway.
|
10 |
Avaliação do efeito da expressão heteróloga da proteorrodopsina de SAR86 em bactérias Gram-negativas na otimização da produção de hidrogênio. / Evaluation of the effect of heterologous expression of the SAR86 proteorhodopsin in gram-negative bactéria on hydrogen production optimization.Taís Mayumi Kuniyoshi 09 June 2015 (has links)
O aproveitamento da energia luminosa por bactérias que produzem hidrogenases poderia aumentar a eficiência do processo de produção de biohidrogênio. Neste trabalho, foi realizada a clonagem do gene que codifica a proteorrodopsina (PR) do isolado metagenômico SAR86 num plasmídeo de expressão para bactérias Gram-negativas. PR é uma proteína ligada ao cromóforo retinal, que, sob iluminação, promove o efluxo de prótons através da membrana celular. O excesso de prótons na face externa da membrana pode servir como substrato para a hidrogenase, resultando em maior eficiência na produção de hidrogênio (2H+ + 2e→ H2). O plasmídeo contendo o gene da PR foi utilizado na transformação genética das bactérias Cupriavidus necator e Escherichia coli, que produzem diversas hidrogenases. Enquanto a PR não se mostrou funcional em C. necator, na linhagem recombinante de E. coli, cultivada em presença de luz e retinal, foi obtido um aumento de até 2,17 vezes na produção de H2 em relação ao cultivo no escuro, desde que a linhagem estivesse produzindo a hidrogenase endógena HYD-4. / The utilization of light energy by hydrogenase producing bacteria could increase the efficiency of the biohydrogen production process. In the present work, the gene coding for proteorhodopsin (PR) of the SAR86 metagenomic lineage was cloned in an expression plasmid for Gram-negative bacteria. PR is an apoprotein linked to the chromophore retinal, which, upon illumination, promotes proton efflux across the cell membrane. The excess of protons on the plasma membrane surface may serve as a substrate for hydrogenases, resulting in a higher efficiency of hydrogen production (2H+ + 2e→ H2). The plasmid containing the PR gene was used to transform the Gram-negative bacteria Cupriavidus necator and Escherichia coli which produce several hydrogenases. Whereas PR did not display functionality in C. necator, in the recombinant E. coli cells, grown under illumination in the presence of retinal, an enhancement up to 2.17 fold in H2 production was found, relative to cells grown under darkness, provided that the cells were expressing the endogenous HYD-4 hydrogenase.
|
Page generated in 0.0462 seconds