• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 284
  • 196
  • 68
  • 27
  • 24
  • 11
  • 9
  • 8
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 687
  • 194
  • 136
  • 132
  • 129
  • 95
  • 78
  • 73
  • 72
  • 71
  • 69
  • 67
  • 67
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Aplicabilidade de modelos de hidrograma unitário em bacias hidrográficas hidrologicamente distintas / Applicability of Unit Hydrograph models in hydrologically different watersheds

Nunes, Gabriela Schiavon 26 August 2015 (has links)
Submitted by Aline Batista (alinehb.ufpel@gmail.com) on 2016-05-09T17:30:55Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Aplicabilidade de modelos de hidrograma unitário em bacias hidrográficas hidrologicamente distintas.pdf: 14911634 bytes, checksum: 81a2209820b64f7bee6b4bd3366bfaac (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2016-05-09T17:31:29Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Aplicabilidade de modelos de hidrograma unitário em bacias hidrográficas hidrologicamente distintas.pdf: 14911634 bytes, checksum: 81a2209820b64f7bee6b4bd3366bfaac (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2016-05-09T17:31:48Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Aplicabilidade de modelos de hidrograma unitário em bacias hidrográficas hidrologicamente distintas.pdf: 14911634 bytes, checksum: 81a2209820b64f7bee6b4bd3366bfaac (MD5) / Made available in DSpace on 2016-05-09T17:32:41Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Aplicabilidade de modelos de hidrograma unitário em bacias hidrográficas hidrologicamente distintas.pdf: 14911634 bytes, checksum: 81a2209820b64f7bee6b4bd3366bfaac (MD5) Previous issue date: 2015-08-26 / Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGS / Eventos extremos de precipitação, combinados com aumento da população, intensificação de atividades agrícolas e uso inadequado do solo, têm culminado em inúmeros problemas relacionados a cheias em bacias hidrográficas. A gestão dos recursos hídricos é considerada bastante desafiadora e o monitoramento hidrológico tem sido uma importante ferramenta. No entanto, o monitoramento hidrológico ainda é um fator limitante de modo que comumente técnicos da área de recursos hídricos se deparam com a ausência de dados no local de interesse. No caso da gestão de cheias em bacias hidrográficas, os dados de vazão são substanciais na compreensão do comportamento hidrológico quando da ocorrência de um evento de chuva intensa. Esta carência de dados hidrológicos tem resultado no desenvolvimento de modelos para estimativa de hidrogramas de escoamento superficial direto (ESD) resultantes de eventos de precipitação. O ESD é o componente mais importante para análise de vazões decorrentes de eventos extremos de chuva. Dentre as técnicas de modelagem de ESD, deve ser destacada a teoria do Hidrograma Unitário (HU) e do Hidrograma Unitário Instantâneo (HUI). O objetivo deste trabalho foi avaliar os modelos de HU Triangular (HUT), HU Adimensional (HUA), HUI de Nash (HUIN), HUI de Clark (HUIC), HUI de Nash Geomorfológico (HUING) e HUI de Clark Geomorfológico (HUICG) para determinação do hidrograma de ESD decorrentes de eventos de precipitação em uma bacia hidrográfica localizada no Rio Grande do Sul e outra em Minas Gerais. As informações básicas para utilização de tais modelos de HU e HUI foram as variáveis topográficas extraídas dos modelos digitais de elevação e dados hidrológicos de cada bacia. Foi estabelecida a curva-chave de cada seção de controle no intuito de converter dados linimétricos em dados de vazões. Com base nos eventos chuva-vazão escolhidos para cada bacia, pôde-se constituir o hietograma de cada evento e o hidrograma correspondente. A separação de escoamento foi realizada usando o método das inflexões, enquanto a determinação das precipitações efetivas (Pe’s) foi realizada pelos métodos do Índice , CN e CN modificado. Foi possível constatar que: i) as suposições da técnica de HU e de HUI foram válidos para a modelagem do hidrograma de ESD para as duas bacias hidrográficas analisadas; ii) houveram diferenças nos hidrogramas de ESD estimados nas duas bacias pelos modelos de HU e HUI empregados; iii) além de ter sido verificado o impacto das diferenças de características fisiográficas entre as bacias, especialmente aquelas vinculadas ao solo, na modelagem de cheias, também foi constatado que a diferença do padrão de chuvas entre as duas regiões exerceu influência na referida modelagem; iv) o método de determinação de Pe exerceu influência significativa sobre os resultados dos diferentes modelos de HU e HUI, especialmente quando da estimativa de vazões de pico; e v) o modelo HUIC foi o que estimou os hidrogramas de ESD para as duas bacias hidrográficas de forma mais satisfatória, seguido do HUIN, sendo que ambos apresentaram substancial superioridade em relação aos modelos de HU tradicionalmente empregados (HUT e HUA) e também aos modelos de HUING e HUICG. / Heavy rainfall events in conjunction with increase in population, intensification of agricultural activities and inappropriate land use, have resulted in countless problems related to floods in watersheds. Water resources management is considered challenging and hydrological monitoring has been a fundamental tool. However, this type of monitoring is a limiting factor such that practitioners and engineers have to commonly deal with the inexistence or lack of information in the site of interest. Streamflow data sets are essential for flood management in watersheds in order to allow the understanding of hydrological behavior due to the occurrence of a heavy rainfall event. Such lack of hydrological data has culminated in the development of models for estimation of direct surface runoff (DSR) hydrographs resulting of rainfall events. DSR is the main component when analyzing stream flows originated from extreme rainfall events. Among the existing techniques available for DSR modeling, it should be highlighted the theory of Unit Hydrograph (UH) and of Instantaneous Unit Hydrograph (IUH). The objective of this study was to evaluate the Triangular UH (TUH), Dimensionless UH (DUH), Nash IUH (NIUH), Clark IUH(CIUH), Geomorphological Nash IUH (GNIUH) and Geomorphological Clark IUH (GCIUH) for estimation of DSR hydrographs resulting of extreme rainfall events in a watershed situated in Rio Grande do Sul State and another located in Minas Gerais State. The basic information for use of the aforementioned UH and IUH models were topographical variables extracted from digital elevation models and hydrological data (rainfall and water level). The stage-discharge rating curve of each outlet was obtained in order to convert water levels into streamflow records. Based on the rainfall-streamflow events, which were chosen for each watershed, it was possible to develop the hyetograph of each event and the corresponding hydrograph. DSR separation was performed through the inflexion method, while the determination of effective rainfalls (Pe’s) was done by means of the methods known as  index, CN and Modified CN. The main results and conclusions were: i) the suppositions of UH and IUH were valid for DSR modeling in the studied watersheds; ii) differences among DSR hydrographs estimated by the different models of UH and IUH were found; iii) there was impact of the differences in physiographical characteristics between watersheds, especially those parameters associated with soil, on flood modeling, and it was also observed that the difference in the rainfall patters between watersheds exerted influence on flood modeling; iv) the method for determination of Pe had substantial influence on the results obtained through the different UH and IUH models, especially when analyzing the estimation of peak stream flows; and v) CIUH was the most satisfactory model to estimate DSR hydrographs for the watersheds, followed by NIUH, and both presented substantial superiority in relation to the UH models, which are traditionally employed (TUH and DUH), and to the GNIUH and GCIUH.
122

Desempenho de modelos de hidrograma unitário em duas bacias hidrográficas com comportamento hidrológico contrastante / Performance of unit hydrograph models in two watersheds with contrasting hydrological behavior

Veber, Cristian Larri Pires 07 October 2016 (has links)
Submitted by Aline Batista (alinehb.ufpel@gmail.com) on 2017-03-23T19:24:33Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Cristian Veber .pdf: 4396179 bytes, checksum: e16ff0b1e5568507720a03591574c162 (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-03-23T19:24:55Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Cristian Veber .pdf: 4396179 bytes, checksum: e16ff0b1e5568507720a03591574c162 (MD5) / Made available in DSpace on 2017-03-23T19:25:05Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Cristian Veber .pdf: 4396179 bytes, checksum: e16ff0b1e5568507720a03591574c162 (MD5) Previous issue date: 2016-10-07 / Alterações no meio ambiente e os efeitos naturais e antropogênicos resultantes têm chamado a atenção na comunidade científica em virtude do alto impacto sobre os ecossistemas, especialmente ligado a desastres naturais originados a partir de eventos extremos de precipitação. Uma das técnicas fundamentais, no que se refere ao gerenciamento dos recursos hídricos, do meio ambiente e, consequentemente, do manejo adequado de bacias hidrográficas, é a modelagem hidrológica. Contudo, uma das principais limitações de sua aplicação é a carência de dados hidrológicos, especialmente de vazões. Esta limitação tem estimulado o desenvolvimento e a calibração de modelos hidrológicos que possibilitam a estimativa do escoamento superficial direto (ESD). Neste sentido, as teorias do Hidrograma Unitário (HU) e do Hidrograma Unitário Instantâneo (HUI) têm se destacado no tocante à modelagem hidrológica de cheias. O principal objetivo deste trabalho foi avaliar a aplicabilidade de modelos conceituais (HUI de Clark – HUIC e HUI de Nash – HUIN), modelos sintéticos (HU Adimensional – HUA e HU Triangular - HUT) e modelos geomorfológicos (HUI Geomorfológico de Clark – HUIGC e HUI Geomorfológico de Nash – HUIGN) visando à estimativa de vazões de pico e de hidrogramas de ESD, tomando como base duas pequenas bacias hidrográficas experimentais (sanga Ellert – BHSE e ribeirão Lavrinha – BHRL), com características geomorfoclimáticas e comportamento hidrológico contrastantes. As informações básicas para este estudo foram obtidas a partir dos modelos digitais de elevação e de dados monitorados de chuva e vazão nas referidas bacias. As principais conclusões deste trabalho foram: a) Os modelos HUIC e HUIN foram os que tiveram melhor acurácia nas duas bacias hidrográficas; b) Os modelos HUA e HUT não foram adequados para a BHRL, mas estimaram de forma satisfatória a maioria dos eventos na BHSE; c) O HUIGC se sobressaiu em relação ao HUIGN para a BHSE, mas teve comportamento similar ao HUT e HUA; d) O HUIGN teve desempenho superior ao HUIGC, HUT e HUA para a BHRL. / Alterations in the environment and the resulting natural and anthropogenic effects have attracted attention in the scientific community due to the high impact on ecosystems, especially related to natural disasters originated from extreme precipitation events. Hydrological modeling is one of the main techniques used for the management of water resources, environment and watersheds. However, one of the major limitations of its application is the lack of hydrological data, primarily associated with stream flow. This limitation has stimulated the development and calibration of hydrological models intended for estimation of direct surface runoff (DSR). In this context, the theories of Unit Hydrograph (UH) and Instantaneous Unit Hydrograph (IUH) have stood out for the hydrological modeling of floods. The main objective of this study was to evaluate the applicability of conceptual models (Clark’s IUH - CIUH and Nash’s IUH - NIUH), synthetic models (Dimensionless UH - DUH and Triangular UH - TUH) and geomorphological models (Clark’s Geomorphological IUH - CGIUH and Nash’s Geomorphological IUH -NGIUH) for estimation of peak stream flows and DSR hydrographs, taking as reference two small experimental watersheds (Ellert Creek Watershed - ECW and Lavrinha Creek Watershed - LCW), which have contrasting geomorphoclimatic characteristics and hydrological behavior. The basic information for this study were obtained from digital elevation models and monitorated data (rainfall and stream flow) in these watersheds. The main conclusions of this study were: a) CIUH and NIUH models were those that resulted in the greatest accuracy for both watersheds; b) DUH and TUH models were not suitable for LCW, but estimated hydrographs satisfactorily for most of the events in ECW; c) CGIUH out performed NGIUH for ECW, but presented behavior similar to TUH and DUH; d) NGIUH had performance better than CGIUH, TUH and DUH for LCW.
123

Modelagem concentrada e semi-distribuída para simulação de vazão, produção de sedimentos e de contaminantes em bacias hidrográficas do interior de São Paulo / Parsimonious and physically-based models to evaluate streamflow, soil loss and pollution in watersheds in the interior of São Paulo

Franciane Mendonça dos Santos 11 September 2018 (has links)
A escassez de dados hidrológicos no Brasil é um problema recorrente em muitas regiões, principalmente em se tratando de dados hidrométricos, produção de sedimentos e qualidade da água. A pesquisa por modelos de bacias hidrográficas tem aumentado nas últimas décadas, porém, a estimativa de dados hidrossedimentológicos a partir de modelos mais sofisticados demanda de grande número de variáveis, que devem ser ajustadas para cada sistema natural, o que dificulta a sua aplicação. O objetivo principal desta tese foi avaliar diferentes ferramentas de modelagem utilizadas para a estimativa da vazão, produção de sedimentos e qualidade da água e, em particular, comparar os resultados obtidos de um modelo hidrológico físico semi-distribuído, o Soil Water Assessment Tool (SWAT) com os resultados obtidos a partir de modelos hidrológicos concentrados, com base na metodologia do número da curva de escoamento do Soil Conservation Service (SCS-CN) e no modelo Generalized Watershed Loading Function (GWLF). Buscou-se avaliar e apresentar em quais condições o uso de cada modelo deve ser recomendado, ou seja, quando o esforço necessário para executar o modelo semi-distribuído leva a melhores resultados efetivos. Em relação à simulação da vazão, os resultados dos dois modelos foram altamente influenciados pelos dados de precipitação, indicando que existem, possivelmente, falhas ou erros de medição que poderiam ter influenciado negativamente os resultados. Portanto, foi proposto aplicar o modelo semi-distribuído com dados de precipitação interpolados (DPI) de alta resolução para verificar a eficiência de seus resultados em comparação com os resultados obtidos com a utilização dos dados de precipitação observados (DPO). Para simulação da produção de sedimentos, e das concentrações de nitrogênio e fósforo, o SWAT realiza uma simulação hidrológica mais detalhada, portanto, fornece resultados ligeiramente melhores para parâmetros de qualidade da água. O uso do modelo semi-distribuído também foi ampliado para simular uma bacia hidrográfica sob a influência do reservatório, a fim de verificar a potencialidade do modelo para esse propósito. Os modelos também foram aplicados para identificar quais os impactos potenciais das mudanças no uso do solo previstas e em andamento. Os cenários estudados foram: I – cenário atual, II – cenário tendencial, com o aumento da mancha urbana e substituição do solo exposto e de parte da mata nativa por uso agrícola; III – cenário desejável, complementa o crescimento urbano tendencial com aumento de áreas de reflorestamento. As metodologias foram aplicadas em duas bacias hidrográficas localizadas no Sudeste do Brasil. A primeira é a bacia do rio Jacaré-Guaçu, incluída na Unidade de Gerenciamento de Recursos Hídricos 13 (UGRHI-13), a montante da confluência do rio das Cruzes, com uma área de 1934 km2. O segundo caso de estudo, é a bacia do rio Atibaia, inserida na UGRHI-5, tem uma área de 2817,88 km2 e abrange municípios dos estados de São Paulo e Minas Gerais. Como principal conclusão, o desempenho do modelo semi-distribuído para estimar a produção de sedimentos, e as concentrações de nitrogênio e fósforo foi ligeiramente melhor do que as simulações do modelo concentrado SCS-CN e GWLF, mas essa vantagem pode não compensar o esforço adicional de calibrá-lo e validá-lo. / The lack of hydrological data in Brazil is a recurrent problem in many regions, especially in hydrometric data, sediment yield and water quality. The research by simplified models has increased in the last decades, however, the estimation of hydrossedimentological data from these more sophisticated models demands many variables, which must be adjusted for each natural system, which makes it difficult to apply. At times it is necessary to respond quickly without much precision in the results, in these situations, simpler models with few parameters can be the solution. The objective of this research is to evaluate different modelling tools used estimate streamflow, sediments yield and nutrients loads values, and namely to compare the results obtained from a physically-based distributed hydrological model (SWAT) with the results from a lumped hydrological, the Soil Conservation Service (SCS-CN) and the Generalized Watershed Loading Function (GWLF) model. Both models use the curve number (CN) concept, determined from land use, soil hydrologic group and antecedent soil moisture conditions and were run with a daily time step. We are particularly interested in understanding under which conditions the use of each model is to be recommended, namely when does the addition effort required to run the distributed model leads to effective better results. The input variables and parameters of the lumped model are assumed constant throughout the watershed, while the SWAT model performs the hydrological analysis at a small unit level, designated as hydrological response units (HRUs), and integrates the results at a sub-basin level. In relation to the flow simulation, the results of the two models were highly influenced by the rainfall data, indicating that, possibly, faults or measurement errors could have negatively influenced the results. Therefore, it was proposed to apply the distributed model with high-resolution grids of daily precipitation to verify the efficiency of its results when compared to rainfall data. For simulation of sediment, nitrogen and phosphorus, SWAT performs a more detailed simulation and thus provides slightly better results. The use of the SWAT was also extended to simulate the influence of reservoir, in order to verify the potentiality of the model, in relation to the simulation. The models also were used to identify which are potential impacts of the ongoing land use changes. The scenarios were: I - Current scenario, II - trend scenario, with the increase of urban land and replacement of the exposed soil and part of the native forest by agricultural use; III - desirable scenario complements the trend urban growth with the replacement of exposed soil and part of the agricultural use by reforestation. The methodologies were applied on two watersheds located in the Southeast of Brazil. The first one is the Jacaré-Guaçu river basin, included in the Water Resources Management Unit 13 (UGRHI-13), upstream of Cruzes river confluence, with an area of 1934 km2. The second watershed is the Atibaia River Basin, a part of Water Resources Management Unit 5 (UGRHI-5). It has an area of 2817.88 km2 and covers municipalities of the states of São Paulo and Minas Gerais.
124

Modélisation hydrologique déterministe pour les systèmes d'aide à la décision en temps réel : application au bassin versant Var, France / Deterministic hydrological modelling for real time decision support systems : application to the Var catchment, France

Ma, Qiang 14 March 2018 (has links)
Les ressources en eau sont généralement considérées comme l'une des ressources naturelles les plus importantes du développement social, en particulier pour soutenir les usages domestiques, agricoles et industriels. Au cours de la dernière décennie, en raison de l'augmentation des activités humaines, telles que l'urbanisation et l'industrialisation, les impacts sociaux sur l'environnement naturel deviennent de plus en plus intenses. Par conséquent, de nos jours, les problèmes d'eau par rapport à avant deviennent plus compliqués. Pour faire face au problème complexe depuis les années 1970, les gens ont reconnu que le système d'aide à la décision (DSS) présente des avantages évidents. De plus, avec le développement de l'informatique et des techniques web, les DSS sont souvent utilisés pour appuyer la décision locale. Les décideurs pour gérer les ressources naturelles de la région en particulier les ressources en eau. La modélisation hydrologique en charge de la représentation des caractéristiques du bassin versant joue un rôle important dans le système d'aide à la décision environnementale (EDSS). Parmi les différents types de modèles, le modèle hydrologique distribué déterministe est capable de décrire l'état réel de la zone d'étude de manière plus détaillée et précise. Cependant, le seul obstacle à la limitation des applications de ce type de modèle est pointé vers le grand besoin de données demandé par sa configuration de modélisation. Dans cette étude d'évaluation de la modélisation hydrologique dans le projet AquaVar, un modèle distribué déterministe (MIKE SHE) est construit pour l'ensemble du bassin versant du Var avec moins d'informations de terrain disponibles dans la zone. Grâce à une stratégie de modélisation raisonnable, plusieurs hypothèses sont conçues pour résoudre les problèmes de données manquantes dans les intervalles de temps quotidiens et horaires. La simulation est étalonnée sur une échelle de temps quotidienne et horaire de 2008 à 2011, qui contient un événement de crue extrême en 2011. En raison des impacts des données manquantes sur les entrées et les observations du modèle, l'évaluation de l'étalonnage de la modélisation n'est pas seulement basée sur des coefficients statistiques tels que le coefficient de Nash, mais aussi des facteurs physiques (p. ex. valeurs maximales et débit total). Le modèle calibré est capable de décrire les conditions habituelles du système hydrologique varois, et représente également le phénomène inhabituel dans le bassin versant tel que les inondations et les sécheresses. Le processus de validation mis en œuvre de 2011 à 2014 dans l'intervalle de temps journalier et horaire confirme la bonne performance de la simulation dans le Var. La simulation MIKE SHE dans Var est l'une des parties principales du système de modélisation distribuée déterministe de l'EDSS d'AquaVar. Après l'étalonnage et la validation, le modèle pourrait être utilisé pour prévoir les impacts des événements météorologiques à venir (par exemple, des crues extrêmes) dans cette région et produire les conditions aux limites pour d'autres modèles distribués déterministes dans le système. La conception de l'architecture EDSS, la stratégie de modélisation et le processus d'évaluation de modélisation présentés dans cette recherche pourraient être appliqués comme un processus de travail standard pour résoudre les problèmes similaires dans d'autres régions. / Water resource is commonly considered as one of the most important natural resources in social development especially for supporting domestic, agricultural and industrial uses. During the last decade, due to the increase of human activities, such as urbanization and industrialization, the social impacts on the natural environment become more and more intensive. Therefore, recently, water problems compared to before become more complicated. To deal with the complex problem, since 1970s, started from the companies, people recognized that the Decision Support System (DSS) has obvious advantages Moreover, with the development of computer science and web techniques, the DSS are commonly applied for supporting the local decision makers to manage the region natural resources especially the water resources. The hydrological modelling in charge of representing the catchment characteristics plays significant role in the Environment Decision Support System (EDSS). Among different kinds of models, the deterministic distributed hydrological model is able to describe the real condition of the study area in more detail and accurate way. However, the only obstacle to limit the applications of this kind of model is pointed to the large data requirement requested by its modelling set up. In this study of hydrological modelling assessment in AquaVar project, one deterministic distributed model (MIKE SHE) is built for the whole Var catchment with less field information available in the area. Through one reasonable modelling strategy, several hypothesises are conceived to solve the missing data problems within daily and hourly time intervals. The simulation is calibrated in both daily and hourly time scale from 2008 to 2011, which contains one extreme flood event at 2011. Due to the impacts of missing data on both model inputs and observations, the evaluation of modelling calibration is not only based on the statistic coefficients such as Nash coefficient, but also effected by some physical factors (e.g. peak values and total discharge). The calibrated model is able to describe usual condition of Var hydrological system, and also represent the unusual phenomenon in the catchment such as flood and drought event. The validation process implemented from 2011 to 2014 within both daily and hourly time interval further proves the good performance of the simulation in Var. The MIKE SHE simulation in Var is one of the main parts of the deterministic distributed modelling system in the EDSS of AquaVar. After the calibration and validation, the model could be able to use for forecasting the impacts of coming meteorological events (e.g. extreme flood) in this region and producing the boundary conditions for other deterministic distributed models in the system. The design of the EDSS architecture, modelling strategy and modelling evaluation process presented in this research could be applied as one standard working process for solving the similar problems in other region.
125

Hydrological modeling as a tool for sustainable water resources management: a case study of the Awash River Basin

Tessema, Selome M. January 2011 (has links)
The growing pressure on the world‘s fresh water resources is enforced by population growth that leads to conflicts between demands for different purposes. A main concern on water use is the conflict between the environment and other purposes like hydropower, irrigation for agriculture and domestic and industry water supply, where total flows are diverted without releasing water for ecological conservation. As a consequence, some of the common problems related to water faced by many countries are shortage, quality deterioration and flood impacts. Hence, utilization of integrated water resources management in a single system, which is built up by river basin, is an optimum way to handle the question of water. However, in many areas, when planning for balancing water demands major gaps exist on baseline knowledge of water resources. In order to bridge these gaps, hydro-logical models are among the available tools used to acquire adequate understanding of the characteristics of the river basin. Apart from forecasting and predicting the quantity and quality of water for decision makers, some models could also help in predicting the impacts of natural and anthropogenic changes on water resources and also in quantifying the spatial and temporal availability of the resources. However, main challenges lie in choosing and utilizing these models for a specific basin and managerial plan. In this study, an analysis of the different types of models and application of a selected model to characterize the Awash River basin, located in Ethiopia, is presented. The results from the modeling procedure and the performance of the model are discussed. The different possible sources of uncertainties in the modeling process are also discussed. The results indicate dissimilar predictions in using different methods; hence proper care must be taken in selecting and employing available methods for a specific watershed prior to presenting the results to decision makers. / QC 20110516
126

Modelling the hysteretic patterns of solute concentration-discharge relationships and their significance for hydrological pathways at the farm-scale

Eludoyin, Adebayo Oluwole January 2013 (has links)
Recent researches on the effects of environmental degradation on food security suggest that a better understanding of the relationship between agricultural intensification and pollutant transfer is urgently required to support the implementation of sustainable agricultural policies, globally. Poor understanding of the hydrological behaviour of clay-rich soils in intensively managed agricultural regions is highlighted as an important problem. The study therefore evaluated precipitation-soil water chemistry relationships, soil variability and concentration-discharge relationships at the farm-scale based on datasets from the North Wyke Farm Platform between 2011 and 2013. The three main hypothesis were that (1) precipitation and soil water chemistry are significantly related (2) significant relationships exists between the distribution of soil physiochemical characteristics and the managments of the fields, and that (3) hydrological behaviour of fields underlain by certain dominant soils in the study area are different from that of other fields. The basis of this work was to elucidate links between sources of pollutants and water quality, further understanding of the effect that management of the soil may have upon the quality of the water and improve understanding of the pathways of pollutants within intensively managed landscapes. Precipitation chemistry of the study area was chemically different from that of the other regions in the United Kingdom, and was influenced by contributions from sea salts and terrestrial dusts. The soil chemistry was rich in organic matter which contributed significantly (r2>0.60; p<0.05) to the distribution of total carbon and total nitrogen in the fields. Mean total carbon and nitrogen stocks ranged 32.4 - 54.1 t C ha-1, and 4 - 6.2 t Na ha-1, respectively in the entire farm platform while runoff coefficient at four selected fields (Pecketsford, Burrows, Middle and Higher Wyke Moor, and Longlands East) varied between 0.1 and 0.28 in January and November, 2013. The study rejected the first and third hypotheses, and concluded that the study area is largely influenced by contributions from the surface runoff mechanisms. The study also noted that sodium and chloride ions were dominant in the precipitation chemistry, and therefore suggests their further investigation as conservative tracers in the soil and runoff chemistry.
127

Decision Making Under Uncertainty in Systems Hydrology

Davis, Donald Ross 05 1900 (has links)
Design of engineering projects involve a certain amount of uncertainty. How should design decisions be taken in face of the uncertainty? What is the most efficient way of handling the data? Decision theory can provide useful answers to these questions. The literature review shows that decision theory is a fairly well developed decision method, with almost no application in hydrology. The steps of decision theoretic analysis are given. They are augmented by the concept of expected expected opportunity loss, which is developed as a means of measuring the expected value of additional data before they are received. The method is applied to the design of bridge piers and flood levees for Rillito Creek, Pima County, Arizona. Uncertainty in both the mean and the variance of the logarithms of the peak flows of Rillito Creek is taken into account. Also shown are decision theoretic methods for: 1) handling secondary data, such as obtained from a regression relation, 2) evaluating the effect of the use of non - sufficient statistics, 3) considering alternate models and 4) regionalizing data.It is concluded that decision theory provides a rational structure for making design decisions and for the associated data collection and handling problems.
128

The impact of climate change on hydrological predictions, with specific reference to 24-hour rainfall intensities in the Western Cape

Van Wageningen, Andries 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2006. / The climate of the world varies from one decade to another, and a changing climate is natural and expected. However there is a well-founded concern that the unprecedented human industrial development activities of the past two centuries (and mainly the last century) have caused changes over and above natural variation. Climate change is the natural cycle through which the earth and its atmosphere are going to accommodate the change in the amount of energy received from the sun. There are various indicators that can be monitored to measure and verify possible climatic changes. This thesis will firstly emphasize what the possible effects of climate change could be on amongst others, the coastal zone, biodiversity and water resources. If the impact of climate change on the above mentioned processes are monitored, and changing trends can be identified, these processes could in fact be seen as climate change indicators. This is of major importance to us, to be able to accurately identify whether climatic changes are experienced in any given area and to attempt to quantify it. Engineering hydrologists are, amongst other duties, responsible for the determination of peak discharges to be able to size conduits to safely convey the stormwater for given recurrence interval events. All hydrological predictions are indirectly or directly based on historical data. Empirical formulas and deterministic methods were developed and calibrated from known historical data. Statistical predictions are directly based on actual data. The question that arises is whether the historical data still provides an accurate basis from which possible future events can be predicted? This thesis strives to find an answer to this question and will also try to advise hydrologists on how they should interpret historical data in the future, taking climate change into consideration. The methodology that will be followed will be to compare the percentage of occurrence of 24-hour rainfall events of different magnitudes, for historical- as well as predicted rainfall, for five different rainfall stations in the Western Cape. A detailed analysis of measured data at a rainfall station, with 42 years of useable data, will also be performed, to verify whether any measurable trends have already been experienced. Conclusions shall be drawn as to possible trends, and recommendations will be made as to how hydrologists could allow for the possible changing rainfall patterns.
129

Simulated Impact of Land Use Dynamics on Hydrology during a 20-year-period of Beles Basin in Ethiopia

Surur, Anwar January 2010 (has links)
<p>Land use/cover has shown significant changes during the past three decades in Ethiopia especially in the highlands of the country. That resulted in changes in streamflows and other hydrological processes. The existing land and water resources system of the area is adversely affected due the rapid growth of population, deforestation, surface erosion and sediment transport. The main objective of this study is to evaluate the impact of land use/cover changes in the hydrology of <em>Beles</em> Basin, Ethiopia. The physically based hydrologic model, SWAT, was developed for the <em>Beles</em> basin, Ethiopia by combining geospatial and climatic data. ArcGIS has been used to process geospatial data which includes the Digital Elevation Model (DEM) which has a resolution of 90 m, land use/cover and soil maps. A simple Interpolation technique has been used to fill in the missing precipitation data. The GIS interface version of SWAT (ArcSWAT) has the capability to utilize ArcGIS to facilitate input data preparation and output data generation. Idrisi Andes in cooperation with ArcGIS 9.2 used to generate landuse/cover maps from Landsat data of three different years. Three SWAT models were set up using the three generated land use/cover maps and used to evaluate the land use/cover change and its impacts on the streamflow of study basin. The primary hydrological model was evaluated through sensitivity analysis, model calibration, and model validation for realistic prediction of the different hydrological components in the basin. Out of twenty six flow parameters sixteen parameters were found to be sensitive. But the most sensitive ten parameters were selected and used for model calibration. The model calibration was carried out using observed streamflow data from 01 January 2001 to 31 December 2002 and a validation period from 01 January 2003 to 31 December 2004. The coefficient of determinations (<em>R2</em>) was 0.74 and the Nash-Sutcliffe simulation efficiency (<em>NSE</em>) was 0.62which indicated that the model was able to predict streamflow with reasonable accuracy. However, the hydrograph of the cumulative hydrographs of the calibration and validation periods showed significant discrepancies between the observed and the simulated data of each period.  The average yearly flow volume of the observed streamflow on the cumulative hydrograph of the calibration period has exceeded the simulated streamflow. On the other hand on the cumulative hydrograph of the validation period the average yearly flow volume of the simulated streamflow was higher than the observed streamflow. The simulated result of the streamflow data from different land use/cover maps revealed that the change in the land use/cover classes of the basin throughout the study periods.</p> / QC 20100707
130

The Integrated Distributed Hydrological Model, ECOFLOW- a Tool for Catchment Management

Sokrut, Nikolay January 2005 (has links)
<p>In order to find effective measures that meet the requirements for proper groundwater quality and quantity management, there is a need to develop a Decision Support System (DSS) and a suitable modelling tool. Central components of a DSS for groundwater management are thought to be models for surface- and groundwater flow and solute transport. The most feasible approach seems to be integration of available mathematical models, and development of a strategy for evaluation of the uncertainty propagation through these models. The physically distributed hydrological model ECOMAG has been integrated with the groundwater model MODFLOW to form a new integrated watershed modelling system - ECOFLOW. The modelling system ECOFLOW has been developed and embedded in Arc View. The multiple-scale modelling principle, combines a more detailed representation of the groundwater flow conditions with lumped watershed modelling, characterised by simplicity in model use, and a minimised number of model parameters. A Bayesian statistical downscaling procedure has also been developed and implemented in the model. This algorithm implies downscaling of the parameters used in the model, and leads to decreasing of the uncertainty level in the modelling results. The integrated model ECOFLOW has been applied to the Vemmenhög catchment, in Southern Sweden, and the Örsundaån catchment, in central Sweden. The applications demonstrated that the model is capable of simulating, with reasonable accuracy, the hydrological processes within both the agriculturally dominated watershed (Vemmenhög) and the forest dominated catchment area (Örsundaån). The results show that the ECOFLOW model adequately predicts the stream and groundwater flow distribution in these watersheds, and that the model can be used as a possible tool for simulation of surface– and groundwater processes on both local and regional scales. A chemical module ECOMAG-N has been created and tested on the Vemmenhög watershed with a highly dense drainage system and intensive fertilisation practises. The chemical module appeared to provide reliable estimates of spatial nitrate loads in the watershed. The observed and simulated nitrogen concentration values were found to be in close agreement at most of the reference points. The proposed future research includes further development of this model for contaminant transport in the surface- and ground water for point and non-point source contamination modelling. Further development of the model will be oriented towards integration of the ECOFLOW model system into a planned Decision Support System.</p>

Page generated in 0.0507 seconds