• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 30
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 88
  • 88
  • 25
  • 22
  • 18
  • 14
  • 14
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Water management for agriculture under a changing climate: case study of Nyagatare watershed in Rwanda

Green, Madeleine January 2019 (has links)
Sub-Saharan Africa is today facing a big challenge regarding food deficiency and water scarcity due to climate change. One of these countries is Rwanda, a small landlocked country in the middle of Africa. Rwanda strongly depend on agriculture, both in the aspect of reducing poverty and hunger but also because their economy security depend on it. Because of increasingly fluctuating rainfalls their agriculture becomes more dependent on irrigation and the availability to water resources. To investigate how the climate change will affect the amount of water resources in the coming decades, this study is focusing on the watershed and marshland of Muvumba P8 in Nyagatare, Rwanda. A hydrological model was created, in a software called Soil and Water Assessment Tool (SWAT), with soil, land use and slope maps for the watershed. Calibrating the model was done with help of Climate Forecast System Reanalysis (CFSR) data and run for nine different climate model datasets. An uncertainty had to be taken into account regarding both the measured local data and the downloaded data. To be able to compare the amount of water resources and the irrigation requirements for the rice crop the farmers were growing on the marshland, the crop water requirements for rice was estimated with FAO’s program called CROPWAT. The irrigation system on the marshland allows a double cropping of rice every year and consist of a system depending on elevation differences to create natural fall. There was three reservoirs along the marshland but to limit the project, only the first reservoir was taken into account. This was complemented with existing data and field survey. Six out of nine climate models showed a decrease in median discharge over the coming 30 years compared to the CFSR historical median discharge. This means that less water in general will reach the outlet of the watershed in the years to come. At the same time all climate models indicate an increase in irrigation requirements for the rice crops. The seasons are probably going to change, a longer and drier season between June and August and a rainier season between September and November are projected.
52

Evaluation de scénarios de gestion paysagère de l’azote par modélisation en bassins versants agricoles / Assessment of landscape nitrogen management scenarios by modelling in agricultural

Casal, Laurène 14 September 2018 (has links)
Les problèmes environnementaux liés à l’excès d’azote d’origine agricole restent une préoccupation majeure en France malgré une réglementation contraignante. Pour concilier maintien de la production agricole et limitation de cet excès, des stratégies novatrices d’atténuation des flux d’azote ont été identifiées, puis leurs effets ont été simulés à l’échelle de paysages agricoles à l’aide de modèles agro-hydrologiques spatialisés. Pour cela, la méthodologie mise en oeuvre a consisté, à partir d’enquêtes de fermes dans deux contextes contrastés (Bretagne et Gascogne),à simuler des scénarios : i) d’optimisation des pratiques agricoles en accord avec le 5ème programme d’actions de la directive Nitrate et ii) d’aménagements paysagers du territoire et en particulier des zones environnementales (prairies fauchées non-fertilisées), en variant l’emprise et la localisation. Les résultats montrent l’intérêt de placer ces zones en position d’interception (i.e. en zone riparienne humide), plutôt qu’en tête de thalweg, notamment sur le site breton où circulations d’eau sub-superficielles dominent. Cette solution limiterait les pertes nitriques sans augmenter les autres émissions d’azote. / Environmental issues related to the excess of reactive nitrogen of agricultural origin activity, are still a major concern in France despite restrictive regulations. To reconcile sustained agricultural production and reduced nitrogen emissions, we identified innovative mitigation strategies and simulated their effects were simulated using distributed agro-hydrological models. The approach consisted in farm surveys in two contrasted situations (NW and SW of France) a basis to simulate the following scenarios :i) optimisation of agricultural practices according to the 5th action programme of the Nitrate Directive ii) conversion of agricultural land into environmental zones (unmanaged grasslands), with varying extension and in different landscape positons. Results show the interest of locating them in an interception position (i.e. in humid zones around the stream network) rather than in headwater position, especially in the NW catchment were subsurface flow is the dominant pathway. This solution would reduce nitrate losses without increasing other nitrogen emissions.
53

Modelo hidrológico da Bacia Hidrográfica da Represa Guarapiranga - São Paulo(SP) / Hydrological model of Guarapiranga\'s Hidrographic Basin- São Paulo (SP)

Mateus, Rosiane da Silva 22 December 2006 (has links)
Este trabalho apresenta um modelo hidrológico da Bacia da Represa Guarapiranga. Localizada na porção Sudoeste da Região Metropolitana de São Paulo, ela fornece água para abastecimento de cerca de 20% da população. Pode ser considerada uma bacia urbana apesar da diversidade de uso e ocupação da terra. A partir de pesquisa bibliográfica, de informações das empresas que administram o sistema de abastecimento público e de investigação de campo, foi elaborado um modelo conceitual do sistema hidrológico da bacia. O modelo conceitual foi então representado sinteticamente em um diagrama de fluxos e armazenagem hídrica. Finalmente, o diagrama foi representado através de um sistema de equações. Foram identificados e reunidos todos os parâmetros e dados necessários para o teste e eventual calibragem do modelo proposto. Isto torna, desde agora, factível o teste e eventual calibragem, em etapa futura, tendo em vista a simulação de diversos cenários do impacto da variação da precipitação pluvial na bacia sobre o estoque de água para o abastecimento público. / This text presents a hydrological model of Guarapiranga\'s Basin. Localized on southwest portion of Metropolitan Region of São Paulo, it gives water for public supply of almost 20% of the population. It can be considered an urban basin in spite of the diversity of its land use and occupation. Based on bibliographic research, information from the companies that administrate the public system, and field observation, it was made a conceptual model of the hydrological system of the basin. The conceptual model was than synthetically represented on a fluxes and stocks diagram. Finally, the diagram was represented through an equation system. All the parameters and data necessary for test and calibration of the model proposed were identified and assembled. This made, yet now, possible the test and eventual calibration for simulating, in a future stage, various scenarios of pluvial precipitation variability in the basin on the public water supply.
54

Composição e configuração da cobertura florestal na bacia hidrográfica e seus efeitos nos serviços hidrológicos / Effects of forest cover composition and spatial configuration in hydrological services at catchment scale

Garcia, Lara Gabrielle 09 October 2018 (has links)
Programas de restauração florestal e pagamento por serviços ecossistêmicos vêm sendo incentivados em várias regiões que apresentam problemas de abastecimento hídrico, com objetivo de recuperação e manutenção dos recursos hídricos. Embora se considere que a cobertura florestal é benéfica para a conservação dos recursos hídricos, esta relação é complexa e dependente de vários fatores físicos, assim como da proporção e da configuração espacial da cobertura florestal na bacia hidrográfica. Diante deste contexto, o objetivo geral do presente estudo foi avaliar os efeitos da proporção e configuração espacial da cobertura florestal na bacia hidrográfica no aumento ou manutenção dos serviços hidrológicos. Para tal, um modelo hidrológico distribuído de base física foi calibrado e validado para permitir a simulação hidrológica dos diferentes usos da terra. A parametrização do modelo teve como base uma bacia hidrográfica monitorada (deflúvio e precipitação) de características agrícolas (pastagem e cana-de-açúcar). Após calibrado e validado o modelo (R2 de 0,65 e 0,62 respectivamente), os cenários a serem simulados foram gerados modificando-se a composição da paisagem (proporção de cobertura florestal) e a configuração espacial da cobertura florestal. É importante ressaltar que as modificações no modelo para cada uso foram referentes diretamente aos processos de evapotranspiração e escoamento superficial e seus desdobramentos. Não foram modificados os processos referentes ao solo (e.g. infiltração e percolação), uma vez que a influência do uso na estrutura do solo ainda é um ponto conflitante. Os serviços hidrológicos considerados foram os de disponibilidade hídrica e proteção. Os indicadores para análise da disponibilidade hídrica foram o deflúvio anual (Q), vazões mínimas (Q95) e índice de fluxo base (BFI); e os indicadores de proteção foram as vazões máximas (Q5) e índice de velocidade (IF). O efeito da proporção da cobertura florestal foi testado por meio de cenários com aumento aleatório de 10% na cobertura florestal (CF), iniciando com o cenário referência de 0% CF até o cenário referência de 100% (11 cenários simulados). As hipóteses testadas foram de que (i) o aumento da cobertura florestal diminui o serviço hidrológico de disponibilidade hídrica, e (ii) o aumento da cobertura florestal aumenta o serviço hidrológico de proteção. Ambas as hipóteses foram aceitas, uma vez que, apesar de os resultados terem apresentado diferenças relativas entre os cenários, não foi possível obter diferença estatística para todos os indicadores. Foi constatada diminuição dos indicadores de Q e Q95 e aumento nos valores de Q5 seguidos de aumento da cobertura florestal. A diferença estatística ocorreu para os indicadores Q e Q5, sendo que em ambos foi possível perceber um limiar de 50% CF, a partir do qual o deflúvio anual e o índice de máximas passaram a ser estatisticamente diferentes do cenário 0% CF. O efeito da configuração espacial foi testado por meio de simulações de cenários com a mesma proporção de cobertura florestal, mas com alterações quanto a sua configuração espacial. Foram simulados quatro cenários: CF no terço inferior (INF); CF no terço médio (MED); CF no terço superior (SUP) da bacia hidrográfica; e CF aleatoriamente distribuída na área (ALE). As hipóteses testadas foram que (i) a configuração espacial da cobertura florestal na bacia hidrográfica não tem influência no serviço hidrológico de disponibilidade de água; e (ii) a configuração espacial da cobertura florestal nas áreas próximas aos corpos hídricos (terço inferior) tem influência positiva no serviço de proteção, ou seja, no aumento deste serviço. Os resultados permitiram aceitar parcialmente as hipóteses, uma vez que apesar de relativamente ocorrer diferenças no serviço hidrológico de disponibilidade hídrica esta não foi estatisticamente significativa, o mesmo ocorrendo para o serviço de proteção. Assim como anteriormente, os resultados permitiram perceber um trade-off entre os serviços testados, pois o cenário com maior redução nos valores de Q e Q95 (INF) foi o que apresentou as maiores reduções no índice de vazão máxima. No entanto, mesmo com a diminuição nos indicadores de disponibilidade hídrica, o cenário com cobertura florestal na parte inferior da bacia hidrográfica foi considerado o mais próximo a um ótimo em relação aos serviços hidrológicos. Diante dos resultados encontrados, pode-se observar que ao se tratar de serviços hidrológicos a cobertura florestal pode apresentar trade-off entre os mesmos, sendo necessário aos programas de restauração e pagamento de serviços ambientais conhecerem esta dinâmica para maximizarem o serviço hidrológico de interesse. / Water resources recovery and maintenance are the main objectives of restoration cover forest programs and payment for ecosystem services. These programs are gaining force and incentives, especially in water crises regions. However, water resources recovery and maintenance are attributed in many cases to forest cover effects on hydrological processes and, consequently, on hydrological services. In this context, our aim in this study was to evaluate if forest cover restoration can result in increase or maintenance of hydrological services. Therefore, firstly it was necessary to calibrate and validate a distributed hydrological physical base model to simulate different land use at the catchment scale. The model parameterization was done on a monitored catchment (flow and precipitation) of agricultural characteristics (pasture and sugar cane). After calibrating and validating the model (R2 of 0.65 and 0.62, respectively), the land use scenarios were generated based on two landscape approaches: forest cover proportion and spatial configuration on catchment scale. The hydrological services used were water supply and protection; indicators for analysis were annual flow (Q), minimum flows (Q95), base flow index (BFI); maximum flows (Q5) and velocity index (IF). Q, Q95 e BFI correspond to water supply, the others are flood protection service. The first approach objective was tested forest cover proportion scenarios with a random increase in forest cover (CF) of 10%, starting with 0% CF reference scenario to 100% CF reference scenario (total of 11 simulated scenarios). The hypotheses tested were that (i) the random increase in forest cover decreases the hydrological service of water supply, and (ii) the random increase in forest cover increases the hydrological protection service. Both hypotheses were partially accepted. Since the results showed relative differences between the scenarios without statistical difference. There was a decrease in Q and Q95 indicators and an increase in Q5 values followed by an increase in forest cover. The statistical difference happened only for Q and Q5 indicators. For both hydrological services it is possible to perceive a threshold of 50% CF, from which the flow annual and the maximum index become statistically different from the 0% CF scenario. The second approach was the simulations of same forest cover proportion scenarios, however with changes in their spatial configuration. Four scenarios were simulated: CF in the lower land (LOW); CF in the middle land (MIDD); CF in the upper lands (UPP) of the river basin; and CF randomly distributed in the area (RAN). The hypotheses tested were (i) the forest cover spatial configuration has no influence on water supply hydrological service; and (ii) the forest cover spatial configuration in areas near the water bodies (lower land) has a positive impact on protection hydrological service. Our results allowed partially accepting the hypotheses, since there are relative differences in the water supply hydrological service after scenarios simulation, there was no statistically significant difference, the same occurring for the protection hydrological service. The results allow us to highlight a trade-off between hydrological services tested in this study, for example, the scenario with the greatest reduction in Q and Q95 values (LOW) also presented the greatest reductions in Q5. However, even with the decrease in water supply indicators, the LOW scenario was considered the closest to an optimum scenario to hydrological services. In view of this, we can be observed that forest cover can present hydrological services trade-off, being necessary to restoration and payment of environmental services programs to know dynamics to maximize the hydrological service of interest. It is important to emphasize that these results and analyses simulations were based on land use change scenarios (related to the evapotranspiration and surface runoff processes) and their unfolding, however, were not modified (e.g. infiltration and percolation). However, land use effects on the soil structure are still not proved a point, possibly these being key processes to forest cover restoration and hydrological services trade-off.
55

Composição e configuração da cobertura florestal na bacia hidrográfica e seus efeitos nos serviços hidrológicos / Effects of forest cover composition and spatial configuration in hydrological services at catchment scale

Lara Gabrielle Garcia 09 October 2018 (has links)
Programas de restauração florestal e pagamento por serviços ecossistêmicos vêm sendo incentivados em várias regiões que apresentam problemas de abastecimento hídrico, com objetivo de recuperação e manutenção dos recursos hídricos. Embora se considere que a cobertura florestal é benéfica para a conservação dos recursos hídricos, esta relação é complexa e dependente de vários fatores físicos, assim como da proporção e da configuração espacial da cobertura florestal na bacia hidrográfica. Diante deste contexto, o objetivo geral do presente estudo foi avaliar os efeitos da proporção e configuração espacial da cobertura florestal na bacia hidrográfica no aumento ou manutenção dos serviços hidrológicos. Para tal, um modelo hidrológico distribuído de base física foi calibrado e validado para permitir a simulação hidrológica dos diferentes usos da terra. A parametrização do modelo teve como base uma bacia hidrográfica monitorada (deflúvio e precipitação) de características agrícolas (pastagem e cana-de-açúcar). Após calibrado e validado o modelo (R2 de 0,65 e 0,62 respectivamente), os cenários a serem simulados foram gerados modificando-se a composição da paisagem (proporção de cobertura florestal) e a configuração espacial da cobertura florestal. É importante ressaltar que as modificações no modelo para cada uso foram referentes diretamente aos processos de evapotranspiração e escoamento superficial e seus desdobramentos. Não foram modificados os processos referentes ao solo (e.g. infiltração e percolação), uma vez que a influência do uso na estrutura do solo ainda é um ponto conflitante. Os serviços hidrológicos considerados foram os de disponibilidade hídrica e proteção. Os indicadores para análise da disponibilidade hídrica foram o deflúvio anual (Q), vazões mínimas (Q95) e índice de fluxo base (BFI); e os indicadores de proteção foram as vazões máximas (Q5) e índice de velocidade (IF). O efeito da proporção da cobertura florestal foi testado por meio de cenários com aumento aleatório de 10% na cobertura florestal (CF), iniciando com o cenário referência de 0% CF até o cenário referência de 100% (11 cenários simulados). As hipóteses testadas foram de que (i) o aumento da cobertura florestal diminui o serviço hidrológico de disponibilidade hídrica, e (ii) o aumento da cobertura florestal aumenta o serviço hidrológico de proteção. Ambas as hipóteses foram aceitas, uma vez que, apesar de os resultados terem apresentado diferenças relativas entre os cenários, não foi possível obter diferença estatística para todos os indicadores. Foi constatada diminuição dos indicadores de Q e Q95 e aumento nos valores de Q5 seguidos de aumento da cobertura florestal. A diferença estatística ocorreu para os indicadores Q e Q5, sendo que em ambos foi possível perceber um limiar de 50% CF, a partir do qual o deflúvio anual e o índice de máximas passaram a ser estatisticamente diferentes do cenário 0% CF. O efeito da configuração espacial foi testado por meio de simulações de cenários com a mesma proporção de cobertura florestal, mas com alterações quanto a sua configuração espacial. Foram simulados quatro cenários: CF no terço inferior (INF); CF no terço médio (MED); CF no terço superior (SUP) da bacia hidrográfica; e CF aleatoriamente distribuída na área (ALE). As hipóteses testadas foram que (i) a configuração espacial da cobertura florestal na bacia hidrográfica não tem influência no serviço hidrológico de disponibilidade de água; e (ii) a configuração espacial da cobertura florestal nas áreas próximas aos corpos hídricos (terço inferior) tem influência positiva no serviço de proteção, ou seja, no aumento deste serviço. Os resultados permitiram aceitar parcialmente as hipóteses, uma vez que apesar de relativamente ocorrer diferenças no serviço hidrológico de disponibilidade hídrica esta não foi estatisticamente significativa, o mesmo ocorrendo para o serviço de proteção. Assim como anteriormente, os resultados permitiram perceber um trade-off entre os serviços testados, pois o cenário com maior redução nos valores de Q e Q95 (INF) foi o que apresentou as maiores reduções no índice de vazão máxima. No entanto, mesmo com a diminuição nos indicadores de disponibilidade hídrica, o cenário com cobertura florestal na parte inferior da bacia hidrográfica foi considerado o mais próximo a um ótimo em relação aos serviços hidrológicos. Diante dos resultados encontrados, pode-se observar que ao se tratar de serviços hidrológicos a cobertura florestal pode apresentar trade-off entre os mesmos, sendo necessário aos programas de restauração e pagamento de serviços ambientais conhecerem esta dinâmica para maximizarem o serviço hidrológico de interesse. / Water resources recovery and maintenance are the main objectives of restoration cover forest programs and payment for ecosystem services. These programs are gaining force and incentives, especially in water crises regions. However, water resources recovery and maintenance are attributed in many cases to forest cover effects on hydrological processes and, consequently, on hydrological services. In this context, our aim in this study was to evaluate if forest cover restoration can result in increase or maintenance of hydrological services. Therefore, firstly it was necessary to calibrate and validate a distributed hydrological physical base model to simulate different land use at the catchment scale. The model parameterization was done on a monitored catchment (flow and precipitation) of agricultural characteristics (pasture and sugar cane). After calibrating and validating the model (R2 of 0.65 and 0.62, respectively), the land use scenarios were generated based on two landscape approaches: forest cover proportion and spatial configuration on catchment scale. The hydrological services used were water supply and protection; indicators for analysis were annual flow (Q), minimum flows (Q95), base flow index (BFI); maximum flows (Q5) and velocity index (IF). Q, Q95 e BFI correspond to water supply, the others are flood protection service. The first approach objective was tested forest cover proportion scenarios with a random increase in forest cover (CF) of 10%, starting with 0% CF reference scenario to 100% CF reference scenario (total of 11 simulated scenarios). The hypotheses tested were that (i) the random increase in forest cover decreases the hydrological service of water supply, and (ii) the random increase in forest cover increases the hydrological protection service. Both hypotheses were partially accepted. Since the results showed relative differences between the scenarios without statistical difference. There was a decrease in Q and Q95 indicators and an increase in Q5 values followed by an increase in forest cover. The statistical difference happened only for Q and Q5 indicators. For both hydrological services it is possible to perceive a threshold of 50% CF, from which the flow annual and the maximum index become statistically different from the 0% CF scenario. The second approach was the simulations of same forest cover proportion scenarios, however with changes in their spatial configuration. Four scenarios were simulated: CF in the lower land (LOW); CF in the middle land (MIDD); CF in the upper lands (UPP) of the river basin; and CF randomly distributed in the area (RAN). The hypotheses tested were (i) the forest cover spatial configuration has no influence on water supply hydrological service; and (ii) the forest cover spatial configuration in areas near the water bodies (lower land) has a positive impact on protection hydrological service. Our results allowed partially accepting the hypotheses, since there are relative differences in the water supply hydrological service after scenarios simulation, there was no statistically significant difference, the same occurring for the protection hydrological service. The results allow us to highlight a trade-off between hydrological services tested in this study, for example, the scenario with the greatest reduction in Q and Q95 values (LOW) also presented the greatest reductions in Q5. However, even with the decrease in water supply indicators, the LOW scenario was considered the closest to an optimum scenario to hydrological services. In view of this, we can be observed that forest cover can present hydrological services trade-off, being necessary to restoration and payment of environmental services programs to know dynamics to maximize the hydrological service of interest. It is important to emphasize that these results and analyses simulations were based on land use change scenarios (related to the evapotranspiration and surface runoff processes) and their unfolding, however, were not modified (e.g. infiltration and percolation). However, land use effects on the soil structure are still not proved a point, possibly these being key processes to forest cover restoration and hydrological services trade-off.
56

Interações entre as aguas superficiais e o Sistema Aquífero Serra Geral do Paraná 3, estado do Paraná

Melati, Maurício Dambrós January 2018 (has links)
Em regiões úmidas a relação entre os mananciais superficiais e subterrâneos se dá principalmente por meio da descarga dos aquíferos para os rios, essa dinâmica é “alimentada” principalmente pela recarga subterrânea. A área de estudo foi a Bacia do Paraná 3, localizada no Sistema Aquífero Serra Geral, no estado do Paraná. O presente trabalho estudou a recarga subterrânea em duas bacias monitoradas por estações fluviométricas a partir de três diferentes métodos, o balanço hídrico, a separação do escoamento de base usando três diferentes formas de obtenção do parâmetro BFImax (tabelado, curva de permanência e filtro inverso), e a modelagem hidrológica a partir da análise dos reservatórios subterrâneo e subsuperficial do modelo MGB-IPH. Para melhor entender as águas subterrâneas, também se utilizou o TWS do GRACE para avaliar as variações do armazenamento de água na área. Os resultados obtidos mostraram que a maioria dos métodos e suas variações convergiram em grandeza (resultados médio de 491,4±31,9mm para a bacia SFV e 270,1±39,4mm para a bacia SFF), com exceção dos resultados da aplicação da separação do escoamento de base usando o BFImax tabelado (212,0mm para a bacia SFV e 160,6mm para a bacia SFF), além disso, verificou-se que o uso do esvaziamento do reservatório subsuperficial e subterrâneo juntos (612,9±18,1mm para a bacia SFV e 372,8±25,2mm para a bacia SFF) apresenta resultados similares ao uso de filtros e ao balanço hídrico, entretanto, quando se utiliza somente o esvaziamento do reservatório subterrâneo (509,1±17,3mm para a bacia SFV e 53,5±9,7mm para a bacia SFF), somente uma estação converge em resultados, a outra apresenta valores bastante inferiores, esses resultados foram explicados pelas diferentes geomorfologias das bacias. Foi verificado que a aplicação dos filtros de separação do escoamento de base em dados simulados no modelo MGB-IPH não apresenta prejuízos em relação a aplicação dos mesmos em dados observados (<4%). A variação mensal da recarga subterrânea apresentou um comportamento concordante ao TWS do GRACE. Com os resultados obtidos um modelo hidrogeológico conceitual da área foi proposto com base nas características físicas (geomorfologia, solos, características hidráulicas e hidrológicas e dados dos poços) e com base nos resultados obtidos pela aplicação dos métodos de recarga subterrânea. O modelo mostrou que a existência de topos alongados e aplainados em regiões de baixa de declividade favorecem a recarga subterrânea frente a regiões sem topos aplainados e de maior declividade, além disso, a profundidade dos solos também explicou os resultados. / In humid regions, the relationship between groundwater sources and the rivers is mainly governed by the discharge of aquifers into rivers, this dynamics is fed mainly by groundwater recharge. The study area was the Paraná Basin 3, located in the Serra Geral Aquifer System, in the state of Paraná. The present work studied the groundwater recharge in two basins monitored by gauge stations using three different methods: the water-budget method, the hydrograph separation method using three different ways of obtaining the BFImax parameter (Eckhardt pre-defined values, Q90/Q50 ratio and backwards filter) and the hydrological modeling from the analysis of the groundwater and subsurface reservoirs of the MGB-IPH model. To better understand groundwater, TWS obtained from GRACE was also used to assess variations in water storage in the area. The results showed that most of the methods and their variations converged in magnitude (average of 491,4±31,9mm for SFV basin and 270,1±39,4mm for SFF basin), except for the results of the hydrograph separation using the Eckhardt pre-defined values of BFImax (212,0mm for SFV basin and 160,6mm for SFF basin), in addition, it was verified that the use of the emptying of the subsurface and groundwater reservoir together (612,9±18,1mm for SFV basin and 372,8±25,2mm for SFF basin) presents results similar to the use of hydrograph separation and to the water-budget method, however, when only the emptying of the groundwater reservoir is used (509,1±17,3mm for SFV basin and 53,5±9,7mm for SFF basin), only one station converged in results, the other presented lower values, these results were explained by the different geomorphologies of the basins. It was verified that the application of the hydrograph separation in simulated data does not present damages in relation to the application of the same in observed data (<4%). The monthly variation of the groundwater recharge presented a concordant behavior to the TWS. With the results obtained a conceptual hydrogeological model of the area was proposed based on the physical characteristics (geomorphology, soils, hydraulic and hydrological characteristics and hydrodynamic characteristics of the wells) and based on the results obtained by the application of groundwater recharge methods. The model showed that the existence of elongated and flattened tops in low declivity regions favors groundwater recharge compared to regions with no flattened tops and with greater declivity, in addition, soil depth also influenced the results.
57

Modélisation de l’évolution hydroclimatique des flux et stocks d’eau verte et d’eau bleue du bassin versant de la Garonne / Modelling the hydroclimatic evolution of flow and stocks of green and blue water over the Garonne river watershed

Grusson, Youen 25 April 2016 (has links)
La gestion intégrée de la ressource en eau implique de distinguer les parcours de l’eau qui sont accessibles aux sociétés de ceux qui ne le sont pas. Les cheminements de l’eau sont nombreux et fortement variables d’un lieu à l’autre. Il est possible de simplifier cette question en s’attardant plutôt aux deux destinations de l’eau. L’eau bleue forme les réserves et les flux dans l’hydrosystème : cours d’eau, nappes et écoulements souterrains. L’eau verte est le flux invisible de vapeur d’eau qui rejoint l’atmosphère. Elle inclut l’eau consommée par les plantes et l’eau dans les sols. Or, un grand nombre d’études ne portent que sur un seul type d’eau bleue, en ne s’intéressant généralement qu’au devenir des débits ou, plus rarement, à la recharge des nappes. Le portrait global est alors manquant. Dans un même temps, les changements climatiques viennent impacter ce cheminement de l’eau en faisant varier de manière distincte les différents composants de cycle hydrologique. L’étude réalisée ici utilise l’outil de modélisation SWAT afin de réaliser le suivi de toutes les composantes du cycle hydrologique et de quantifier l’impact des changements climatiques sur l’hydrosystème du bassin versant de la Garonne. Une première partie du travail a permis d’affiner la mise en place du modèle pour répondre au mieux à la problématique posée. Un soin particulier a été apporté à l’utilisation de données météorologiques sur grille (SAFRAN) ainsi qu’à la prise en compte de la neige sur les reliefs. Le calage des paramètres du modèle a été testé dans un contexte differential split sampling, en calant puis validant sur des années contrastées en terme climatique afin d’appréhender la robustesse de la simulation dans un contexte de changements climatiques. Cette étape a permis une amélioration substantielle des performances sur la période de calage (2000-2010) ainsi que la mise en évidence de la stabilité du modèle face aux changements climatiques. Par suite, des simulations sur une période d’un siècle (1960-2050) ont été produites puis analysées en deux phases : i) La période passée (1960-2000), basée sur les observations climatiques, a servi de période de validation à long terme du modèle sur la simulation des débits, avec de très bonnes performances. L’analyse des différents composants hydrologiques met en évidence un impact fort sur les flux et stocks d’eau verte, avec une diminution de la teneur en eau des sols et une augmentation importante de l’évapotranspiration. Les composantes de l’eau bleue sont principalement perturbées au niveau du stock de neige et des débits qui présentent tous les deux une baisse substantielle. ii) Des projections hydrologiques ont été réalisées (2010-2050) en sélectionnant une gamme de scénarios et de modèles climatiques issus d’une mise à l’échelle dynamique. L’analyse de simulation vient en bonne part confirmer les conclusions tirées de la période passée : un impact important sur l’eau verte, avec toujours une baisse de la teneur en eau des sols et une augmentation de l’évapotranspiration potentielle. Les simulations montrent que la teneur en eau des sols pendant la période estivale est telle qu’elle en vient à réduire les flux d’évapotranspiration réelle, mettant en évidence le possible déficit futur des stocks d’eau verte. En outre, si l’analyse des composantes de l’eau bleue montre toujours une diminution significative du stock de neige, les débits semblent cette fois en hausse pendant l’automne et l’hiver. Ces résultats sont un signe de l’«accélération» des composantes d’eau bleue de surface, probablement en relation avec l’augmentation des évènements extrêmes de précipitation. Ce travail a permis de réaliser une analyse des variations de la plupart des composantes du cycle hydrologique à l’échelle d’un bassin versant, confirmant l’importance de prendre en compte toutes ces composantes pour évaluer l’impact des changements climatiques et plus largement des changements environnementaux sur la ressource en eau. / Integrated water resource management requires distinction between water paths that are directly available for society and those which are not. Water pathways, from precipitation to the oceans or the atmosphere, are highly variable from one place to another. The complexity of water pathways can be simplified by focusing on two main categories of water resources: blue water, which is the stock and flow moving into the hydrosystem that is directly available (e.g. rivers, lakes, aquifers and groundwater flow), and green water, which is the invisible flow of water vapor leaving the hydrosphere to the atmosphere. The latter includes the water used by forests, grasslands, rain fed crops, and the water in soils. However, many hydrological studies focus only on blue water, particularly the discharge or more rarely the ground water recharge, ignoring all green water components, therefore missing the overall picture. At the same time, climate change highlighted in recent years have been found to impact water pathway distributions by affecting different components of the hydrological cycle at the watershed scale. The study presented here exploits the SWAT hydrological model to assess the variation of different components of a hydrosystem facing climate change. The study area is the watershed of the Garonne River, where data is available. The first part of this work focused on refining the implementation of the model in order to better tackle the problem at hand. Particular attention has been paid to the use of gridded weather data (SAFRAN product) as well as to the simulation of snow present in the mountainous portion of the watershed. Calibration of the model parameters was tested through a differential split sampling method, based on calibration and validation using climatically contrasted periods, in order to test the robustness of the model. These steps led to a substantial improvement in the simulations performance over the calibration period (2000-2010) and demonstrated the robustness of the model within a climate change context. The improved SWAT model was next used to produce simulations over a hundred-year period (1960-2050), an analysis carried out in two steps: First, the past period (1960-2000) simulation, based on observed climatic data, was used to validate discharge simulations for which very good performance was obtained. Analysis of the different components of the hydrological cycle showed a strong impact on flows and stocks of green water, with a reduction of the water content in soil and a substantial increase in evapotranspiration. Blue water is mostly impacted in terms of snow stock and discharge flow, which both showed a substantial decrease. Secondly, hydrological projections were performed (2010-2050) based on a selection of climate scenarios and models, submitted to dynamic downscaling. Analysis of these projections partly confirmed the conclusions drawn from the historic period: i.e. a substantial impact on green water, with a decrease of the soil water content and an increase of potential evapotranspiration. The projections also revealed that the soil water content during the summer season is such that it reduces the actual evapotranspiration, highlighting possible future deficits of green water stocks. Furthermore, if the analysis of blue water components always presented a substantial decrease in the snowpack, discharge appears to increase during autumn and winter periods. These results indicate an "acceleration" of blue surface water components which is likely related to an increase in extreme rainfall events. In this study, an analysis of the variation of the main hydrological cycle components have been proposed at a watershed scales, confirming the importance of taking into account all these components to evaluate the climate change impact and more broadly environmental changes on water resources.
58

Dinâmica espaço-temporal das áreas variáveis de afluência da bacia do córrego do Cavalheiro / Spatio-temporal dynamics of variable source areas of Cavalheiro\'s watershed

Silva, Michel Metran da 20 September 2012 (has links)
As áreas variáveis de afluência (AVAs) são dinâmicas, apresentando expansão das áreas saturadas durante os eventos de chuva, geralmente próximas aos cursos d\'água e, no momento que a chuva cessa, estas áreas saturadas se contraem. O escoamento superficial ocorre nessas áreas devido ao excesso de saturação, provocado pelo aumento do volume d\'água armazenado no perfil de solo e, extravasamento nas áreas com solos rasos, próxima aos rios. Dessa forma, faz-se necessário quantificar o processo de escoamento superficial para a correta delimitação das AVAs. A utilização dos modelos hidrológicos para essa finalidade teve início após legislação estadunidense que define níveis máximos permitidos para poluição difusa. Diversos modelos foram desenvolvidos para quantificar a entrada de poluentes nos corpos hídricos, entretanto não havia maneira precisa de localizar as áreas variáveis de afluência, sendo estas as mais propensas a carrear os contaminantes. Somente através da utilização de modelos hidrológicos distribuídos foi possível considerar o componente espacial, ou seja, a localização exata da ocorrência dos processos hidrológicos, e sua inter-relação com uso de solo e tipo de solo, permitindo testar diferentes cenários avaliando quais áreas convertidas em florestas contribuiriam para maior ganho de serviços ecossistêmicos relacionados à manutenção de recursos hídricos. Portanto, foram modelados 3 cenários: o cenário atual, o cenário AVA e o cenário Código Florestal. O primeiro representa a situação atual do uso do solo, e fornece base para comparação com outros cenários. A probabilidade de saturação para este cenário foi definida com uso do modelo hidrológico GSSHA, permitindo delimitar as áreas variáveis de afluência e criar o cenário AVA, o qual simula a restauração florestal em todas as áreas variáveis de afluência. Por último, foi modelado o cenário Código Florestal, que simula a restauração florestal das áreas de preservação permanentes (APPs), com a função de avaliar quais os impactos para a manutenção dos recursos hídricos caso seja cumprido o Código Florestal (Lei nº. 4.711/65) e sejam restauradas todas as áreas de preservação permanente. Os resultados mostram que a restauração das AVA, com alteração de apenas 4,04% da área total da bacia, aumentaria em 48% a infiltração da água no solo, eliminando a geração de escoamento superficial em áreas agrosilvopastoris e conseqüente carreamento de poluentes provenientes dessas áreas. A restauração das APPs representa uma alteração de 9,36% da área da bacia e promove a recuperação da dinâmica de expansão e contração das nascentes da bacia hidrográfica, que garante redução da vazão e atraso do pico de vazão, evitando respostas hidrológicas hortonianas na bacia hidrográfica. Ambos cenários apresentam benefícios para manutenção dos recursos hídricos. As áreas de preservação permanente apresentam papel significativo na proteção dos recursos hídricos, protegendo mais de 60% das AVAs e sendo de fácil delimitação. A utilização do índice topográfico como variável substituta à modelagem hidrológica apresentou correlação de ~0,33, que permite utilizar o índice para uma análise exploratória, porém insuficiente para delimitar as áreas variáveis de afluência. / The variables source areas (VSA) are dynamic, showing expansion of saturated areas during rain events, usually near to streams and, at the time the rain stops, these saturated areas contract. Runoff occurs in these areas due to saturation excess overland flow, caused by increased of stored volume water in the soil profile, and extravasation in areas with shallow soils, next to streams. Thus, it is necessary to quantify the process of runoff for the correct delineation of VSA. The use of hydrological models for this purpose began after U.S. law which sets maximum permitted levels for diffuse pollution. Several models have been developed to quantify the entry of pollutants in water bodies, however there was no accurate way to pinpoint variables source areas, which are the most likely to carrying contaminants. Only through the use of distributed hydrological models was possible to consider the spatial component, in other words, the exact location of the occurrence of hydrological processes and their interrelationship with land use and soil type, allowing you to test different scenarios by assessing which areas converted to forests contribute to greater gains in ecosystem services related to maintenance of water resources. Therefore, were evaluated three scenarios: the actual scenario, the VSA scenario and the Forest Code scenario. The first one represents the current state of land use and provides a basis for comparison with other scenarios. The probability of saturation for this scenario was defined using the hydrological model GSSHA, allowing to delimit variables source areas and to create the VSA scenario, which simulates forest restoration in all variables source areas. Finally, was modeled the Forestry Code scenario, which simulates forest restoration of permanent preservation areas (PPA), whose function is to assess the impacts for the maintenance of water resources if it complied the Forest Code (Law nº. 4.711/65) and restored all permanent preservation areas. The results show that the restoration of the VSA, with only a 4,04% change of the total area of the watershed, it would increase in 48% water infiltration into the soil, eliminating the generation of surface runoff and consequent carry pollutants from these areas. The restoration of the PPA represents a change of 9,36% of the watershed area and promotes the recovery of dynamic expansion and contraction of the headwaters of the watershed, which ensures reduction in flow rate and delay peak flow, avoiding answers hortonian in the hydrological basin. Both scenarios provide benefits for maintenance of water resources. The permanent preservation areas have significant role in protecting water resources, protecting more than 60% of VSA and being easy delimitation. The use of topographic index as surrogate parameter correlated to the hydrological modeling of ~ 0,33, which allows use the index to an exploratory analysis, but insufficient to delineate the variables source areas.
59

Impact of Land Use and Climate Change on Hydrological Ecosystem Services (Water Supply) in the Dryland Area of the Middle Reaches of the Yellow River

Zhang, Lulu 11 November 2015 (has links) (PDF)
Driven by many factors, the water supply services (streamflow and groundwater) of many rivers in the dryland area of China have declined significantly. This aggravates the inherent severe water shortages and results in increased severity in the water use conflicts that are threatening sustainable development in the region. Innovative strategies towards more water-efficient land management are vital for enhancing water quantity to ensure water supply security. A key step in the successful development and implementation of such measures is to understand the response of hydrological processes and related services to changes in land management and climate. To this end, it was decided to investigate these processes and responses in the upper reaches of the Jing River (Jinghe), an important meso-scale watershed in the middle reaches of the Yellow River on the Loess Plateau (NW China). It has been shown that vegetation restoration efforts (planting trees and grass) are effective in controlling soil erosion on the Loess Plateau. Shifts in land cover/use lead to modifications of soil physical properties. Yet, it remains unclear if the hydraulic properties have also been improved by vegetation restoration. A better understanding of how vegetation restoration alters soil structure and related soil hydraulic properties, such as water conductivity and soil water storage capacity, is necessary. Three adjacent sites, with comparable soil texture, soil type, and topography but contrasting land cover (Black locust forest, grassland, and cropland), were investigated in a small catchment in the upstream Jinghe watershed (near Jingchuan, Gansu province). Seasonal variations of soil hydraulic properties in topsoil and subsoil were examined. Results revealed that the type of land use had a significant impact on field-saturated, near-saturated hydraulic conductivity, and soil water characteristics. Specifically, conversion from cropland to grass or forests promotes infiltration capacity as a result of increased saturated hydraulic conductivity, air capacity, and macroporosity. Moreover, conversion from cropland to forest tends to promote the formation of mesopores that increase soil water storage capacity. Tillage in cropland temporarily created well-structured topsoil, but also compacted subsoil, as indicated by low subsoil saturated hydraulic conductivity, air capacity, and plant available water capacity. An impact of land cover conversion on unsaturated hydraulic conductivities was not identified, indicating that changes in land cover do not affect functional meso- and microporosity. Changes in soil hydraulic properties and associated hydrological processes and services due to soil conservation efforts need to be considered, should soil conservation measures be implemented in water-limited regions for sustaining adequate water supply. To differentiate between the impacts of land management and climate change on streamflow, the variation of annual streamflow, precipitation, potential evapotranspiration, and climatic water balance in a small catchment of the upstream Jinghe watershed (near Pingliang, Gansu province) was examined during the period of 1955 – 2004. During this time the relative contributions of changes in land management and climate to the reduction of streamflow were estimated. A statistically significant decreasing trend of -1.14 mm y-1 in annual streamflow was detected. Furthermore, an abrupt streamflow reduction due to afforestation and construction of terraces and check-dams was identified around 1980. Remarkably, 74% of the total reduction in mean annual streamflow can be attributed to the soil conservation measures. Among various conservation measures, streamflow could be considerably reduced by afforestation and terracing (including damland creation), due to their low contribution to water yield. In contrast, slope farmland and grassland can maintain a certain level of water supply services due to higher runoff coefficients. According to a meta-analysis of the published studies on the Loess Plateau, the impact of changes in land management on annual streamflow appears to diminish with increasing catchment size while the impact of climate change appears uniform across space. This means that there is a dependency between the catchment size and the response of hydrological processes to environmental change. At least at the local scale, it appears that well-considered land management may help to ensure the water supply services. Due to limited surface water availability, groundwater is an essential water source for supporting ecosystem and socio-economic development in the dryland region. However, the groundwater process is susceptible and vulnerable to changes in climate and landscape (i.e., land cover and form) that in turn can result in profound adverse consequences on water supply services in water-limited regions. In addition, an improved understanding of the response of groundwater related processes to natural and artificial disturbances is likely to ensure more secure and more sustainable governance and management of such regions, as well as better options for adapting to climate change. Yet, this topic has seldom been researched, especially in areas that have already experienced large-scale alteration in landscape and are located in dryland regions, such as the Loess Plateau. Therefore, an investigation of the baseflow variation along the landscape change was conducted. The average annual baseflow has significantly decreased at catchment scale during the period of 1962 – 2002 without any obvious significant change in climate. At decadal scale, the reduction accounts for approximately 9% in the 1970s, 48% in the 1980s, and 92% in the 1990s, while the baseflow index declines averaging 5%, 16% and 67%, respectively. All of the monthly baseflow levels dropped at varying rates except in January, among which July was the most severe in terms of both magnitude (-4.17) and slope (-0.09 mm y-1). In perspective of landscape change, landform change (terrace and check-dam) tends to reduce baseflow by reallocation of surface fluxes and retention for crop growth causing limited deep drainage in other areas. Land cover change (i.e., afforestation) reduced the baseflow to a larger extent by enhanced evapotranspiration and thus hampered deep drainage as suggested by the soil moisture measurement underneath. The study indicates that knowledge about baseflow formation on catchment scale needs further improvement. Integrated soil conservation and water management for optimizing landscape structure and function in order to balance soil (erosion) and water (supply) related hydrological ecosystem services is vital. The governing processes to the changes of water-supply-services-related hydrological process (e.g., streamflow) are assumed to be different across space. To this end, the factors controlling streamflow were investigated on both a small and large scale. Streamflow in small catchments was found to be mainly controlled by precipitation and land cover type. On a larger scale, evaporative demand was found to be another additional major driving force. Hydrological modeling is a frequently used tool for the assessment of impacts of land use and climate change on water balance and water fluxes. However, application of the Soil and Water Assessment Tool (SWAT) model in the upstream Jinghe watershed was unsuccessful due to difficulties in calibration. The inability of the SWAT model to take the influence of terraces on steep slopes into consideration and the method how to calculate lateral flow were the main reasons for unsatisfactory calibration, at least for the current version of SWAT used in this study. Alternatively, Budyko’s frameworks were applied to predict the annual and long-term streamflow. However, the effect of changes in land management (e.g., afforestation) on streamflow could not be assessed due to a lack of vegetation factors. Therefore, an empirical analysis tool was derived based on an existing relationship for estimation. This method was found to be the most effective in reproducing the annual and long-term streamflow. The incorporation of temporal changes in land cover and form in the approach enables the estimation of the possible impact of soil conservation measures (e.g., afforestation or terracing). The importance of adaptive land management strategies for mitigating water shortage and securing the water supply services on the Loess Plateau was highlighted. A cross-sectoral view of the multiple services offered by managed ecosystems at different spatial scales under changing environments needs to be integrated to improve adaptive land management policy. In a water limited environment, such as the Loess Plateau, multiple ecosystem services including hydrological services need to be balanced with minimum trade-offs. This can only be achieved when management is based on a holistic understanding of the interdependencies among various ecosystem services and how they might change under alternative land management.
60

Modélisation hydrologique de bassins versants périurbains et influence de l'occupation du sol et de la gestion des eaux pluviales : Application au bassin de l'Yzeron (130km2) / Hydrological modelling of periurban catchments and impacts provoked by the evolution of landuse and rainwater management in a French periurban catchment (Yzeron, 130 km2)

Labbas, Mériem 24 February 2015 (has links)
Les bassins périurbains, constitués de zones urbaines, agricoles et naturelles, sont des bassinsversants complexes à étudier. L’augmentation des surfaces imperméables et les modifications deschemins d’écoulement par les réseaux d’assainissement influencent leur hydrologie. Ces modificationssont notamment liées aux choix de modes de gestion des eaux pluviales : réseaux unitaires,réseaux séparatifs, infiltration à la parcelle, etc. La modélisation hydrologique spatialisée, quirend compte de l’hétérogénéité des bassins versants, est un outil permettant d’évaluer les différentsenjeux en termes d’occupation du sol et de gestion des eaux pluviales. Cependant, peu demodèles ont été construits pour être appliqués aux bassins périurbains, à l’échelle des gestionnaires(˜ 100 km2) et pour des simulations sur de longues périodes (> 10 ans). La modélisationhydrologique doit donc être adaptée afin de mieux capter les spécificités des milieux périurbainstelles que l’hétérogénéité de l’occupation du sol et la connexion de certaines zones urbaines à unréseau d’assainissement.Ce travail de thèse a consisté à développer un nouvel outil de modélisation adapté à ces problématiques: le modèle distribué horaire J2000P. Ce modèle simule les processus hydrologiquesen milieux ruraux et urbains et prend en compte les réseaux d’assainissement, les connexionsà ces réseaux et les déversements des déversoirs d’orage (DO). Le modèle a été mis en oeuvresur le bassin périurbain de l’Yzeron (˜ 130 km2), situé à l’ouest de Lyon. L’évaluation, effectuéeà l’exutoire de différents sous-bassins de tailles et d’occupations du sol différentes, montre desrésultats très encourageants. Le modèle a tendance à sous-estimer le débit mais la dynamiquedes pics est bien représentée tout comme le déversement des DO. Suite aux résultats de l’évaluation,une analyse de sensibilité « pas à pas » du modèle a été réalisée et différentes hypothèsesde fonctionnement du bassin ont été formulées pour améliorer la compréhension du modèle etdes processus représentés. Le modèle a ensuite été utilisé pour tester l’impact de modificationsde l’occupation des sols et/ou de la gestion des eaux pluviales sur la réponse hydrologique. Lemodèle montre que la gestion de l’occupation du sol a moins d’influence sur l’hydrologie dubassin que la gestion du réseau d’assainissement. / Growing urbanization and related anthropogenic processes have a high potential to influencehydrological process dynamics. Typical consequences are an increase of surface imperviousnessand modifications of water flow paths due to artificial channels and barriers (combined and separatedsystem, sewer overflow device, roads, ditches, etc.). Periurban catchments, at the edgeof large cities, are especially affected by fast anthropogenic modifications. They usually consistof a combination of natural areas, rural areas with dispersed settlements and urban areas mostlycovered by built zones and spots of natural surfaces. Spatialized hydrological modeling tools, simulatingthe entire hydrological cycle and able to take into account the important heterogeneityof periurban watersheds can be used to assess the impact of stormwater management practiceson their hydrology.We propose a new modeling tool for these issues : the hourly distributed J2000P model.This model simulates the hydrological processes in rural and urban areas and takes into accountthe sewerage networks, connections to these networks and overflows from sewer overflow devices(SOD). The application site is the Yzeron catchment (˜ 130 km2), located in the West of Lyon.The evaluation, conducted at the outlet of different sub-basins with different sizes and landuse, shows very encouraging results. The model tends to underestimate the discharge but thedynamics of the peaks and the SOD overflows are well simulated. The model is also used to testthe impact of changes in land use and/or stormwater management on the hydrological response.The results show that land use management has less impact on the hydrology of the catchmentthan stormwater management.

Page generated in 0.1023 seconds