• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 15
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification du risque individuel de rupture des anévrysmescérébraux intra crâniens : une approche biomécanicienne / Identification of individual risk of rupture of intra cranial cerebral aneurysm : a biomechanical approach.

Sanchez, Mathieu 28 November 2012 (has links)
Le risque individuel de rupture des anévrismes cérébraux est un enjeu majeur dans la prise en charge clinique des anévrismes asymptomatiques. La rupture anévrismale se produit lorsque la contrainte intra-pariétale dépasse la contrainte à rupture du matériau composant la paroi. Notre étude a pour objectif d'être un pas vers une nouvelle mesure biomécanique du risque individuel de rupture des anévrismes cérébraux. Dans un premier temps, une étude expéri- mentale fut menée pour caractériser le comportement biomécanique de la paroi anévrismale sur 16 échantillons d'anévrismes prélevés chirurgicalement. L'expérimentation sur les échan tillons de poche anévrismale a permis de dégager trois grandes classes de tissus pour chaque sexe (homme et femme) : souple, rigide et intermédiaire. Il apparaît que tous les anévrismes non rompus appartiennent à la catégorie rigide ou intermédiaire et que tous les anévrismes rompus correspondent à la catégorie souple. Ceci permet de mettre en évidence une corrélation entre le risque de rupture et les propriétés du matériau composant la paroi anévrismale. Dans un deuxième temps, des simulations d'interaction fluide/structure (FSI) ont été réalisées pour comparer les déformations d'un anévrisme " patient spécifique " constitué d'un matériau dégradé et non dégradé. Les résultats montrent que les propriétés du matériaux ont un impact majeur sur l'ampleur de la variation de volume anévrismale diastolosystolique. Les changements en terme de variations de volume en fonction des caractéristiques du tissu sont potentiellement visualisables à l'aide de l'imagerie médicale. Une analyse des incertitudes des paramètres est aussi présentée et montre la robustesse des résultats aux incertitudes des données d'entrée. Il a ensuite été démontré sur 12 cas " patient-spécifique " d'anévrismes différents (forme, taille, localisation et conditions aux limites différentes) qu'il existe toujours une différence significative en terme de variation de volume au cours du cycle cardiaque entre un anévrisme dont la paroi est composé d'un matériau rigide et d'un matériau souple. Cette étude suggère donc que la variation de volume anévrismale pourrait être utilisée comme une base pour une évaluation individuelle du risque de rupture des anévrismes cérébraux. / The individual risk of rupture of cerebral aneurysm is a major stake in the clinical treatment. The aneurismal rupture occurs when the intra-parietal stress exceeds the rupture stress of the material of the aneurismal wall. The goal of our study is to be a step toward a new biomechanical measure of an individual risk of rupture of cerebral aneurysm. First, an experimental study was performed to characterize the biomechanical behavior of the aneurismal wall on 16 samples of aneurysms removed by neurosurgery. The experimentation on the samples allowed us to reach three main categories of tissues for each sex (female and male): soft, intermediate and stiff. All the unruptured aneurysms belong to the stiff category or the intermediate category and all the ruptured aneurysms belong to the soft category. This is allowed us to give prominence to the correlation between the risk of rupture and the properties of the material of the aneurismal wall. Then, Fluid/Structure interaction computations (FSI) were performed to compare the strain of a “patient-specific” aneurysm composed of a degraded and undegraded material. The results show that the properties of the material have a major impact on the scope of the aneurismal volume variation over the cardiac cycle. The volume variation changes depending on the properties of the tissue are potentially viewable by medical imaging. A study of the uncertainties of the parameters is also proposed and shows the robustness of the results. We also demonstrated on 12 cases of “patient-specific” aneurysms that a significant difference stiff exists in terms of volume variation over the cardiac cycle between an aneurysm composed of a stiff and a soft material. This study suggests that the aneurismal volume variation could be used as a basis for an evaluation of the individual risk of rupture of cerebral aneurysms.
12

Contribution à la modélisation du comportement visco-hyper-élastique de mousses de polyuréthane : Validation expérimentale en quasi-statique / Contribution to visco-hyperelastic behavior modeling of polyurethane foams : Quasi-static experimental validation

Ju, Minglei 20 November 2014 (has links)
La mousse flexible de polyuréthane est couramment utilisée dans nombreuses applications telles que acoustiques, thermiques et de bâtiment grâce à sa faible densité et à son pouvoir d’isolation thermique et acoustique. Elle est également utilisée dans les applications de confort pour les sièges tels que véhicule, train, avion etc. grâce sa faible raideur et à son pouvoir à absorber l’énergie de déformation. Pour optimiser le confort des systèmes d’assise, il est nécessaire de modéliser le siège et en particulier la partie flexible, c’est-à-dire la mousse de polyuréthane. Les objectifs principaux de cette thèse consistent à identifier puis à modéliser le comportement quasi-statique de la mousse de polyuréthane sous différentes conditions d’essais sous grandes déformations. Des essais de compression/décompressions unidirectionnels monocycle et multicycle à différentes vitesses de déformations ont été réalisés sur trois types de mousse de polyuréthane, afin de comprendre le comportement du matériau. Ces essais ont permis de déduire que les mousses de polyuréthanes sous grandes déformations présentent à la fois un comportement hyperélastique et un comportement viscoélastique. Ils ont également montrés que les mousses de polyuréthanes présentent un phénomène d’assouplissement appelé ‘effet de Mullins’ lors que les essais de compression/décompressions multicycle, c’est-à-dire que les contraintes dans 1er cycle sont moins faibles que les contraintes dans les cycles suivants pour une même déformation. Sur la base des résultats d’expérimentaux et afin de modéliser le comportement quasi-statique de la mousse de polyuréthanne, nous avons développé trois modèles visco-hyperélastiques qui se composent de deux éléments à savoir la partie modèles énergétiques hyperélastiques, utilisés généralement pour des matériaux à comportement caoutchoutique, et la partie modèle à mémoire entier qui tient compte de l’historique et permettant de décrire le comportement viscoélastique. Les paramètres des modèles ont été identifiés en utilisant la méthode d’identification et la méthode d’optimisation appropriée. Les résultats des modélisations du comportement mécanique de la mousse sur les essais monocycles et multicycles ont été comparés aux résultats expérimentaux, monteront à la fois une très bonne capacité à simuler le 1er cycle de charge/décharge, ainsi que les cycles suivant. Nos modèles ont prouvé leur capacité à modéliser l’effet de Mullins sur les mousses de polyuréthane souple. Ces modèles ont été validés sur les trois types de mousse et pour trois vitesses de sollicitation, permettent de conclure leurs efficacités et de leurs représentativités. / Flexible polyurethane foam is widely used in numerous applications such as acoustic, thermal and building due to its low density and its ability to absorb thermal and acoustic energy. It is also used for the comfort of the seats such as the vehicle, train, plane due to its low stiffness and its ability to absorb deformation energy. In order to optimize the comfort of the car seat, it is necessary to model the behavior of seat system, particularly the flexible component - polyurethane foam. The main objective of this study is to identify and model the quasi-static behavior of polyurethane foam under different test conditions in large deformations. Compression / decompression uniaxial unicycle and multicycle tests were carried out on three types of polyurethane foam at different strain rates, which allows us to understand the behavior of the material. The results of the tests indicate that the polyurethane foams exhibit a hyperelastic behavior and a viscoelastic behavior under large deformations. They also showed that the polyurethane foams have a stress softening phenomenon which is called 'Mullins effect' during the compression / decompression multicycle tests. In other words, the stress in first cycle is lower than the stresses in the subsequent cycles in the same deformation. ‘Mullins effect’ for the polyurethane foam is also an important study in this dissertation. Based on the experimental results and the goal of modeling quasi-static behavior of the polyurethane foam, three visco-hyperelastic models were developed. These models consist in two elements: hyperelastic models, which is normally used for description the behavior of rubber materials, and entire memory model which takes into account the history and describing the viscoelastic behavior. Model parameters were identified using appropriate identification and optimization methods. The results of modeling the mechanical behavior of the foam on the unicycle and multicycle tests were compared with experimental results. The models showed a very good competence to simulate the first cycle and the following cycles during the charge / discharge tests. Our models have proven its ability to model Mullins effect on flexible polyurethane foams. These models have been validated on three types of foam in order to present a comparative study of their effectiveness and their representativeness.
13

Analyse et simulation du comportement anisotrope lors de la mise en forme de renforts tissés interlock

Orliac, Jean-Guillaume 27 November 2012 (has links) (PDF)
Afin de pouvoir prédire le comportement des renforts de composites 3D interlock au cours d'un procédé de mise en forme, il est nécessaire de connaitre la position des mèches dans le renfort durant la phase de préformage du procédé. Les travaux présentés ici traitent de la simulation du préformage de renforts 3D épais à l'aide d'un élément fini hexaédrique semi-discret spécifique. En utilisant le principe des travaux virtuels, on distingue le travail interne virtuel dû à la tension des mèches des autres travaux virtuels. La raideur due aux tensions de mèches, qui constitue la contribution principale de la rigidité du matériau, est prise en compte à l'aide de barres incluses dans les éléments. Les rigidités dues aux autres sollicitations, comme la compression transverse, les cisaillements ou les frottements inter-mèches, sont décrites par un matériau continu additionnel. La combinaison de ce modèle discret du premier ordre et d'un matériau continu hyperélastique anisotrope dit du second ordre, pour formuler le comportement du matériau va permettre la simulation du préformage des renforts tissés épais. Conjointement aux travaux sur la simulation, des travaux expérimentaux pour l'identification des paramètres matériau de la loi de comportement ont été définis et réalisés. Ces paramètres concernent les deux parties de la formulation du comportement.
14

Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de composites / Hyperelastic approaches to model the mechanical behaviour of woven preforms of composites

Charmetant, Adrien 13 December 2011 (has links)
La simulation des procédés de mise en forme des composites à renforts tissés de type RTM est un enjeu majeur pour les industries de pointe mettant en œuvre ce type de matériaux. Au cours de ces procédés, la préforme tissée est souvent soumise à des déformations importantes. La connaissance et la simulation du comportement mécanique de la préforme à l’échelle macroscopique et à l’échelle mésoscopique s’avère souvent nécessaire pour optimiser la phase de conception de pièces composites formées par de tels procédés. Une analyse du comportement mésoscopique des préformes tissées de composites est d’abord proposée. Une loi de comportement hyperélastique isotrope transverse est développée, permettant de décrire le comportement mécanique de chacun des modes de déformation de la mèche : élongation dans la direction des fibres, compaction et distorsion dans le plan d’isotropie de la mèche, cisaillement le long des fibres. Une méthodologie est proposée pour identifier les paramètres de cette loi de comportement à l’aide d’essais sur la mèche et sur le tissu, et une validation par comparaison avec des essais expérimentaux est présentée. Une analyse du comportement macroscopique des renforts interlocks est ensuite proposée : une loi de comportement hyperélastique orthotrope est développée et implémentée. Cette loi, extension de la loi de comportement pour la mèche, est également basée sur une description phénoménologique des modes de déformation de la préforme. Une méthode d’identification des paramètres de cette loi de comportement est mise en œuvre, utilisant des essais expérimentaux classiques dans le contexte des renforts tissés (tension uniaxiale, compression, bias extension test, flexion). Cette seconde loi de comportement est validée par comparaison avec des essais de flexion et d’emboutissage hémisphérique. / Simulating the preforming stage of RTM-like fabric-reinforced composites manufactoring processes is a major stake for industries which use such materials. During such processes, the woven preform often undergoes finite deformations. Simulation methods are then required to optimize the conception of composites parts formed by RTM. An analysis of the mechanical behaviour of woven preforms at mesoscale is first presented. A transversely isotropic hyperelastic behaviour law is developped in order to describe the mechanical behaviour of each deformation mode of the yarn : elongation in the direction of fibres, compaction and distorsion in the transverse plane and along-fibres shear. An identification method is set up for this behaviour law which allows to compute its parameters by use of simple experimental tests on the yarn and on the fabric. The behaviour law is then validated by comparizon between simulations ans experimental tests. An analysis of the mechanical behaviour of interlock woven preforms at macroscale is the presented. An orthotropic hyperelastic behaviour law is developped and implemented as an extension of the behaviour law for the yarn. A phenomenological approach is also used to describe the mechanical behaviour of each deformation mode of the preform. An identification method is set up and put into place, based on tests well known in the field of fabric reinforcements : tensile test, crushing test, bias extension test, flexure test. A hemispherical stamping simulation is set up and compared to experiment for validation purpose.
15

Analyse et simulation du comportement anisotrope lors de la mise en forme de renforts tissés interlock / Analysis and simulation of anisotropic behavior for the preforming of 3D interlocks composite reinforcements

Orliac, Jean-Guillaume 27 November 2012 (has links)
Afin de pouvoir prédire le comportement des renforts de composites 3D interlock au cours d'un procédé de mise en forme, il est nécessaire de connaitre la position des mèches dans le renfort durant la phase de préformage du procédé. Les travaux présentés ici traitent de la simulation du préformage de renforts 3D épais à l'aide d'un élément fini hexaédrique semi-discret spécifique. En utilisant le principe des travaux virtuels, on distingue le travail interne virtuel dû à la tension des mèches des autres travaux virtuels. La raideur due aux tensions de mèches, qui constitue la contribution principale de la rigidité du matériau, est prise en compte à l'aide de barres incluses dans les éléments. Les rigidités dues aux autres sollicitations, comme la compression transverse, les cisaillements ou les frottements inter-mèches, sont décrites par un matériau continu additionnel. La combinaison de ce modèle discret du premier ordre et d'un matériau continu hyperélastique anisotrope dit du second ordre, pour formuler le comportement du matériau va permettre la simulation du préformage des renforts tissés épais. Conjointement aux travaux sur la simulation, des travaux expérimentaux pour l'identification des paramètres matériau de la loi de comportement ont été définis et réalisés. Ces paramètres concernent les deux parties de la formulation du comportement. / In order to simulate 3D interlock composite reinforcement behavior during forming process, it is necessary to predict yarns positions in the fabric during the preforming stage of the process. The present work deals with thick 3D interlock fabric forming simulation using specific hexahedral semi-discrete finite elements. Using the virtual work principle, we distinguish the virtual internal work due to tensions in yarns from other internal virtual works. The stiffness relative to yarns tension which is the main part of the rigidity is described by bars within the elements. The other rigidities - like transverse compression, shears or friction between yarns - are depicted by a continuous additional material. A combination of this "first order" discrete model and a continuous orthotropic hyperelastic "second order" material formulation will enable us to simulate the interlock preforming process. Jointly to the simulation work, we also had to specify and perform experimental testing identification of material parameters. These parameters concern both parts of the model.

Page generated in 0.0782 seconds