• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compression Bodies and Their Boundary Hyperbolic Structures

Dang, Vinh Xuan 01 December 2015 (has links) (PDF)
We study hyperbolic structures on the compression body C with genus 2 positive boundary and genus 1 negative boundary. We consider individual hyperbolic structures as well as special regions in the space of all such hyperbolic structures. We use some properties of the boundary hyperbolic structures on C to establish an interesting property of cusp shapes of tunnel number one manifolds. This extends a result of Nimershiem in [26] to the class of tunnel number one manifolds. We also establish convergence results on the geometry of compression bodies. This extends the work of Ito in [13] from the punctured-torus case to the compression body case.
2

Rank gradient in co-final towers of certain Kleinian groups

Girão, Darlan Rabelo 01 February 2012 (has links)
This dissertation provides the first known examples of finite co-volume Kleinian groups which have co- final towers of finite index subgroups with positive rank gradient. We prove that if the fundamental group of an orientable finite volume hyperbolic 3-manifold has fi nite index in the reflection group of a right-angled ideal polyhedron in H^3 then it has a co-fi nal tower of fi nite sheeted covers with positive rank gradient. The manifolds we provide are also known to have co- final towers of covers with zero rank gradient. We also prove that the reflection groups of compact right-angled hyperbolic polyhedra satisfying mild conditions have co-fi nal towers of fi nite sheeted covers with positive rank gradient. / text
3

Reducible and toroidal Dehn filling with distance 3

Kang, Sungmo 05 November 2009 (has links)
This dissertation is an investigation into the classification of all hyperbolic manifolds which admit a reducible Dehn filling and a toroidal Dehn filling with distance 3. The first example was given by Boyer and Zhang. They used the Whitehead link. Eudave-Muñoz and Wu gave an infinite family of such hyperbolic manifolds using tangle arguments. I show in this dissertation that these are the only hyperbolic manifolds admitting a reducible Dehn filling and a toroidal Dehn filling with distance 3. The main tool to prove this is to use the intersection graphs on surfaces introduced and developed by Gordon and Luecke. / text
4

Spectral Rigidity and Flexibility of Hyperbolic Manifolds

Justin E Katz (16707999) 31 July 2023 (has links)
<pre>In the first part of this thesis we show that, for a given non-arithmetic closed hyperbolic <i>$</i><i>n</i><i>$</i> manifold <i>$</i><i>M</i><i>$</i>, there exist for each positive integer <i>$</i><i>j</i><i>$</i>, a set <i>$</i><i>M_</i><i>1</i><i>,...,M_j</i><i>$</i> of pairwise nonisometric, strongly isospectral, finite covers of <i>$</i><i>M</i><i>$</i>, and such that for each <i>$</i><i>i,i'</i><i>$</i> one has isomorphisms of cohomology groups <i>$</i><i>H^*(M_i,</i><i>\Zbb</i><i>)=H^*(M_{i'},</i><i>\Zbb</i><i>)</i><i>$</i> which are compatible with respect to the natural maps induced by the cover. In the second part, we prove that hyperbolic <i>$</i><i>2</i><i>$</i>- and <i>$</i><i>3</i><i>$</i>-manifolds which arise from principal congruence subgroups of a maixmal order in a quaternion algebra having type number <i>$</i><i>1</i><i>$</i> are absolutely spectrally rigid. One consequence of this is a partial answer to an outstanding question of Alan Reid, concerning the spectral rigidity of Hurwitz surfaces.</pre>
5

On the Nilpotent Representation Theory of Groups

Milana D Golich (18423324) 23 April 2024 (has links)
<p dir="ltr">In this article, we establish results concerning the nilpotent representation theory of groups. In particular, we utilize a theorem of Stallings to provide a general method that constructs pairs of groups that have isomorphic universal nilpotent quotients. We then prove by counterexample that absolute Galois groups of number fields are not determined by their universal nilpotent quotients. We also show that this is the case for residually nilpotent Kleinian groups and in fact, there exist non-isomorphic pairs that have arbitrarily large nilpotent genus. We additionally provide examples of non-isomorphic curves whose geometric fundamental groups have isomorphic universal nilpotent quotients and the isomorphisms are compatible with the outer Galois actions. </p>
6

Asymptotic Problems on Homogeneous Spaces

Södergren, Anders January 2010 (has links)
This PhD thesis consists of a summary and five papers which all deal with asymptotic problems on certain homogeneous spaces. In Paper I we prove asymptotic equidistribution results for pieces of large closed horospheres in cofinite hyperbolic manifolds of arbitrary dimension. All our results are given with precise estimates on the rates of convergence to equidistribution. Papers II and III are concerned with statistical problems on the space of n-dimensional lattices of covolume one. In Paper II we study the distribution of lengths of non-zero lattice vectors in a random lattice of large dimension. We prove that these lengths, when properly normalized, determine a stochastic process that, as the dimension n tends to infinity, converges weakly to a Poisson process on the positive real line with intensity 1/2. In Paper III we complement this result by proving that the asymptotic distribution of the angles between the shortest non-zero vectors in a random lattice is that of a family of independent Gaussians. In Papers IV and V we investigate the value distribution of the Epstein zeta function along the real axis. In Paper IV we determine the asymptotic value distribution and moments of the Epstein zeta function to the right of the critical strip as the dimension of the underlying space of lattices tends to infinity. In Paper V we determine the asymptotic value distribution of the Epstein zeta function also in the critical strip. As a special case we deduce a result on the asymptotic value distribution of the height function for flat tori. Furthermore, applying our results we discuss a question posed by Sarnak and Strömbergsson as to whether there in large dimensions exist lattices for which the Epstein zeta function has no zeros on the positive real line.
7

Perturbations singulières des systèmes dynamiques en dimension infinie : théorie et applications / Infinite Dimensional Singularly Perturbed Dynamical Systems : Theory and Applications

Seydi, Ousmane 22 November 2013 (has links)
L’objectif de cette thèse est d’étudier et de donner des outils pour la compréhension des problèmes de perturbations singulières pour des modèles épidémiques et des problèmes de dynamiques de populations. Les modèles considérés sont des équations structurées en âge qui peuvent dans certains cas se réécrire comme des équations à retard. L’étude de ces classes d’exemples s’est faite avec succès et a permis de comprendre et de mettre en évidence toute la complexité et l’étendue de ces problèmes. Comme on peut le remarquer dans la littérature, l’une des clés fondamentales à la compréhension de ces problèmes est l’étude des variétés normalement hyperboliques en dimension infinie que nous avons largement étudiées dans cette thèse. L’approche utilisée est la méthode de Lyapunov-Perron. Ce qui nous a amené à étudier les problèmes de persistance et d’existence de trichotomie (dichotomie) exponentielle qui sont des éléments fondamentaux dans l’utilisation de cette méthode. / In this thesis we aim to give tools to understand singular perturbations in epidemic model sand population dynamic models. We study some singularly perturbed delay differential equation which does not enter into the class frame work of geometric singular perturbation for delay differential equations. An example of singularly perturbed age structured model is also studied. The study of these examples allowed us to understand and highlight some complexities of these problems. One of the main tools in understanding such questions is the normally hyperbolic manifolds theory which is our central focus in this thesis. The approach used here is the Lyapunov-Perron method. Therefore the problems of persistence and existence of exponential trichotomy (dichotomy) are also stressed since there are one of the mainingredients of this method.
8

Espace-temps globalement hyperboliques conformément plats / Globally hyperbolic conformally flat spacetimes

Rossi Salvemini, Clara 24 May 2012 (has links)
Les espace-temps conformément plats de dimension supérieure ou égal à 3 sont des variétés localement modelées l'espace-temps d'Einstein où il agit la composante connexe de l'identité du groupe des difféomorfismes conformes.Un espace-temps M est globalement hyperbolique s'il admet une hypersurface S de type espace qui est rencontrée une et une seule fois par toute courbe causale de M. L'hypersurface S est alors dite hypersurface de Cauchy de M.L'ensemble des espace-temps globalement hyperboliques conformément plats, identifiés à difféomorphisme conforme près, est naturellement muni d'une relation d'ordre partielle: on dit que N étends M s'il existe un plongement conforme de M dans N tel que l'image de toute hypersurface de Cauchy de M est une hypersurface de Cauchy de N. Les éléments maximaux par rapport à cette relation d'ordre sont appelés espace-temps maximaux.Le premier résultat qu'on a prouvé est l'existence et unicité de l'extension maximale pour un espace-temps conformément plat globalement hyperbolique donné. Ce résultat généralise un théorème de Choquet-Bruhat et Geroch relatif aux espace-temps solutions des équation d'Einstein.L'unicité de l'extension maximale permet de prouver le résultat suivant:Théorème:En dimension supérieur ou égal à 3, l'espace d'Einstein est le seul espace-temps conformément plat maximal simplement connexe admettant une hypersurface de Cauchy compacte.Si l'hypersurface de Cauchy S du revêtement universel d'un espace-temps M est compacte on obtient donc que M est un quotient fini de l'espace d'Einstein. La structure des géodésiques de l'espace d'Einstein et l'unicité de l'extension maximale permettent de prouver :Théorème:Soit M un espace-temps conformément plat maximal de dimension supérieur ou égal à 3, qui contient deux géodésiques lumières distinctes, librement homotopes et ayant les mêmes extrémités. Alors M est un quotient fini de l'espace d'Einstein.Dans le cas où l'hypersurface S' du revêtement universel M' de M est non compacte on montre chaque point p de M' est déterminé par le compact de S 'constitué par l'intersection de son passé causal ou de son futur causal avec l'hypersurface S', suivant que p appartient au passé ou au futur de S'. Onappelle ce compact l'ombre de p sur S'. L'espace-temps M' s'identifie donc à un sous-ensemble des compacts de S'.Ce point de vue permet d'avoir une compréhension plus profonde de la maximalité d'un espace-temps. En fait on a différentes notions de maximalité :un espace-temps pourrait être maximal parmi les espace-temps conformément plats mais avoir un majorant qui n'est pas conformément plat, i.e. il pourrait exister un plongement conforme dans un espace-temps globalement hyperbolique qui ne soit pas conformément plat.Grâce à la notion d'ombre, on prouve que la structure causale induite sur la frontière de Penrose du revêtement universel d'un espace-temps conformément plat permet de caractériser les espace-temps maximaux parmi tous les espace-temps globalement hyperboliques, on obtient:Théorème:Tout espace-temps globalement hyperbolique conformément plat M qui est maximal parmi les espace-temps globalement hyperbolique conformément plats est aussi maximal parmi tous les espace-temps globalement hyperboliques.On conclut avec une discussion détaillée sur la maximalité des espaces-temps globalement hyperboliques maximaux parmi les espace-temps à courbure constante, suivant le signe de la courbure: lorsque la courbure est négative ou nulle, l'espace-temps est maximal aussi parmi tous les espace-temps globalement hyperboliques, mais cela n'est jamais vrai lorsque la courbure est strictement positive / As a consequence of the Lorentzian version of Liouville’s Theorem, everyconformally flat space-time of dimension 3 is a (Ein1,n,O0(2, n + 1))-manifold. The Einstein’s space-time Ein1,n is the space Sn × S1 with theconformal class of the metric d2−dt2, where d2 and dt2 are the canonicalRiemannian metrics of Sn and R. The group O0(2, n+1) is the group of theconformal diffeomorphisms of Ein1,n whose action preserve the orientationand the time-orientation of Ein1,n. A space-time M is globally hyperbolicif it contains a spacelike hypersurface which intersects every inextensiblecausal curve of M exactly in one point. As a consequence M is not compact.The hypersurface is called a Cauchy hypersurface of M. Geroch’s Theorem([?]) say that if M is globally hyperbolic, then M is homeomorphic to×R. There is a naturally defined partial order on the set of globally hyperbolicspace-times (up to conformal diffeomorphism) : M M0 if does existsa conformal embedding f : M ,! M0 which sends Cauchy hypersurfaces ofM to Cauchy hypersurfaces of M0 (f is called a Cauchy-embedding ). Wecall C-maximal space-times the maximal elements for this partial order onthe set of globally hyperbolic space-times. We can restrict the partial orderto the subset of conformally flat space-times : in this case we call themaximal elements C0-maximal space-times. The first result of the thesis isa generalization of a Theorem proved by Choquet-Bruhat and Geroch in[?] : let M be a globally hyperbolic conformally flat space-time. Then thereis a globally hyperbolic conformally flat C0-maximal space-time N and aCauchy-embedding f : M ,! N. The space-time N is unique up to conformaldiffeomorphisms.The uniqueness of the C0-maximal extension imply that every globally hyperbolicconformally flat simply connected C0-maximal space-time (of dimension3) with a compact Cauchy hypersurface is conformally diffeomorphicto gEin1,n.In the second part of the thesis we study the injectivity of the developingmap of a globally hyperbolic conformally flat space-time M looking at theshape of its the causal boundary.We say that two points p, q are conjugatedin a space-time M if there are two different lightlike geodesics and whichstart at p and meet at q, such that and don’t intersect between p and q.The most remarkable result of this part is : let M a globally hyperbolicconformally flat C0-maximal space-time. If fM has two conjugated pointsthen fM ' gEin1,n. In particular M is a finite quotient of gEin1,n.As a consequence of this result we obtain that the developing map of Mrestricted to the chronological past and future of every point is injective.In the last part of the thesis we give an abstract construction of the Cmaximalextension for a given conformally flat globally hyperbolic spacetime.The idea is that a globally hyperbolic space-time is completely determinedby one of his Cauchy hypersurfaces. This result helps to understandhow to relate the different notions of maximality. In particular we provethat every conformally flat globally hyperbolic space-time M which is C0-maximal is also C-maximal.

Page generated in 0.0895 seconds