1 |
Counting points of bounded height on del Pezzo surfacesKleven, Stephanie January 2006 (has links)
del Pezzo surfaces are isomorphic to either P<sup>1</sup> x P<sup>1</sup> or P<sup>2</sup> blown up <i>a</i> times, where <i>a</i> ranges from 0 to 8. We will look at lines on del Pezzo surfaces isomorphic to P<sup>2</sup> blown up <i>a</i> times with <i>a</i> ranging from 0 to 6. We will show that when we count points of bounded height on one of these surfaces, the number of points on lines give us the primary growth order, but the secondary growth order calculates the number of points on the rest of the surface and hence is a better representation of the geometry of the surface.
|
2 |
Counting points of bounded height on del Pezzo surfacesKleven, Stephanie January 2006 (has links)
del Pezzo surfaces are isomorphic to either P<sup>1</sup> x P<sup>1</sup> or P<sup>2</sup> blown up <i>a</i> times, where <i>a</i> ranges from 0 to 8. We will look at lines on del Pezzo surfaces isomorphic to P<sup>2</sup> blown up <i>a</i> times with <i>a</i> ranging from 0 to 6. We will show that when we count points of bounded height on one of these surfaces, the number of points on lines give us the primary growth order, but the secondary growth order calculates the number of points on the rest of the surface and hence is a better representation of the geometry of the surface.
|
3 |
Resultants and height bounds for zeros of homogeneous polynomial systemsRauh, Nikolas Marcel 26 July 2013 (has links)
In 1955, Cassels proved a now celebrated theorem giving a search bound algorithm for determining whether a quadratic form has a nontrivial zero over the rationals. Since then, his work has been greatly generalized, but most of these newer techniques do not follow his original method of proof. In this thesis, we revisit his 1955 proof, modernize his tools and language, and use this machinery to prove more general theorems regarding height bounds for the common zeros of a system of polynomials in terms of the heights of those polynomials. We then use these theorems to give a short proof of a more general (albeit, known) version of Cassels' Theorem and give some weaker results concerning the rational points of a cubic or a pair of quadratics. / text
|
4 |
Arakelov geometry over an adelic curve and dynamical systems / アデリック曲線上のアラケロフ幾何と力学系Ohnishi, Tomoya 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23676号 / 理博第4766号 / 新制||理||1683(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 森脇 淳, 教授 雪江 明彦, 教授 吉川 謙一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
5 |
Growth rate of height functions associated with ample divisors and its applications / 豊富な因子に付随する高さ関数の増大度とその応用Sano, Kaoru 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21532号 / 理博第4439号 / 新制||理||1638(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 伊藤 哲史, 教授 雪江 明彦, 教授 池田 保 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
6 |
Asymptotic Problems on Homogeneous SpacesSödergren, Anders January 2010 (has links)
This PhD thesis consists of a summary and five papers which all deal with asymptotic problems on certain homogeneous spaces. In Paper I we prove asymptotic equidistribution results for pieces of large closed horospheres in cofinite hyperbolic manifolds of arbitrary dimension. All our results are given with precise estimates on the rates of convergence to equidistribution. Papers II and III are concerned with statistical problems on the space of n-dimensional lattices of covolume one. In Paper II we study the distribution of lengths of non-zero lattice vectors in a random lattice of large dimension. We prove that these lengths, when properly normalized, determine a stochastic process that, as the dimension n tends to infinity, converges weakly to a Poisson process on the positive real line with intensity 1/2. In Paper III we complement this result by proving that the asymptotic distribution of the angles between the shortest non-zero vectors in a random lattice is that of a family of independent Gaussians. In Papers IV and V we investigate the value distribution of the Epstein zeta function along the real axis. In Paper IV we determine the asymptotic value distribution and moments of the Epstein zeta function to the right of the critical strip as the dimension of the underlying space of lattices tends to infinity. In Paper V we determine the asymptotic value distribution of the Epstein zeta function also in the critical strip. As a special case we deduce a result on the asymptotic value distribution of the height function for flat tori. Furthermore, applying our results we discuss a question posed by Sarnak and Strömbergsson as to whether there in large dimensions exist lattices for which the Epstein zeta function has no zeros on the positive real line.
|
7 |
[en] DOMINO TILINGS OF THE TORUS / [pt] COBERTURAS DO TORO POR DOMINÓSFILLIPO DE SOUZA LIMA IMPELLIZIERI 10 May 2016 (has links)
[pt] Consideramos o problema de contar e classificar coberturas por dominós
de toros quadriculados. O problema de contagem para retângulos foi estudado por Kasteleyn e usamos muitas de suas ideias. Coberturas por dominós de regiões planares podem ser representadas por funções altura; para um toro dado por um reticulado L, estas funções exibem L-quasiperiodicidade aritmética. As constantes aditivas determinam o fluxo da cobertura, que pode ser interpretado como um vetor no reticulado dual (2L) asterisco. Damos uma caracterização dos valores de fluxo efetivamente realizados e de como coberturas correspondentes se comportam. Também consideramos coberturas por dominós do reticulado
quadrado infinito; coberturas de toros podem ser vistas como um caso particular
destas. Descrevemos a construção e uso de matrizes de Kasteleyn no
problema de contagem, e como elas podem ser aplicadas para contar coberturas
com valores de fluxo prescritos. Finalmente, estudamos a distribuição limite
do número de coberturas com um dado valor de fluxo quando o reticulado L sofre uma dilatação uniforme. / [en] We consider the problem of counting and classifying domino tilings of
a quadriculated torus. The counting problem for rectangles was studied by
Kasteleyn and we use many of his ideas. Domino tilings of planar regions
can be represented by height functions; for a torus given by a lattice L,
these functions exhibit arithmetic L-quasiperiodicity. The additive constants
determine the flux of the tiling, which can be interpreted as a vector in the
dual lattice (2L) asterisk. We give a characterization of the actual
flux values, and of how corresponding tilings behave. We also consider domino tilings of the
infinite square lattice; tilings of tori can be seen as a particular case of those.
We describe the construction and usage of Kasteleyn matrices in the counting
problem, and how they can be applied to count tilings with prescribed
flux values. Finally, we study the limit distribution of the number of tilings with a
given flux value as a uniform scaling dilates the lattice L.
|
8 |
Superfícies em R4 do ponto de vista da teoria das singularidadesSilva, Paulo do Nascimento 28 May 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:22Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1908357 bytes, checksum: 3762912e093a6400855708f530b6cd4d (MD5)
Previous issue date: 2013-05-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We study the geometry of surfaces immersed in R4 through the singularities of
their families of height functions. Inflection points on the surfaces are shown to
be umbilic points from their families of height functions. Furthermore, we see that
inflection points of imaginary type are isolated points of the curve --1(0). As a
consequence we prove that any dive generic convexly embedded S2 in R4 has inflexion
points. / Neste trabalho estudamos a geometria das superfícies em R4 através da variedade
canal e das singularidades das famílias de funções altura das superfícies. Provaremos
que os pontos de inflexão das superfície são os pontos umbílicos das famílias de funções
altura. Além disso, veremos que pontos de inflexão do tipo imaginário serão pontos
isolados da curva --1(0). Como uma consequência deste estudo provaremos que
qualquer mergulho genérico convexo de S2 em R4 tem pelo menos um ponto de
inflexão.
|
Page generated in 0.0981 seconds