• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes

Baccouch, Mahboub 31 March 2008 (has links)
In this thesis, we present new superconvergence properties of discontinuous Galerkin (DG) methods for two-dimensional hyperbolic problems. We investigate the superconvergence properties of the DG method applied to scalar first-order hyperbolic partial differential equations on triangular meshes. We study the effect of finite element spaces on the superconvergence properties of DG solutions on three types of triangular elements. Superconvergence is described for structured and unstructured meshes. We show that the DG solution is O(hp+1) superconvergent at Legendre points on the outflow edge on triangles having one outflow edge using three p- degree polynomial spaces. For triangles having two outflow edges the finite element error is O(hp+1) superconvergent at the end points of the inflow edge for an augmented space of degree p. Furthermore, we discovered additional mesh-orientation dependent superconvergence points in the interior of triangles. The dependence of these points on orientation is explicitly given. We also established a global superconvergence result on meshes consisting of triangles having one inflow and one outflow edges. Applying a local error analysis, we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of hyperbolic problems on triangular meshes. A posteriori error estimates are needed to guide adaptive enrichment and to provide a measure of solution accuracy for any numerical method. We develop an inexpensive superconvergence-based a posteriori error estimation technique for the DG solutions of conservation laws. We explicitly write the basis functions for the error spaces corresponding to several finite element solution spaces. The leading term of the discretization error on each triangle is estimated by solving a local problem where no boundary conditions are needed. The computed error estimates are shown to converge to the true error under mesh refinement in smooth solution regions. We further present a numerical study of superconvergence properties for the DG method applied to time-dependent convection problems. We also construct asymptotically correct a posteriori error estimates by solving local hyperbolic problems with no boundary conditions on general unstructured meshes. The global superconvergence results are numerically confirmed. Finally, the a posteriori error estimates are tested on several linear and nonlinear problems to show their efficiency and accuracy under mesh refinement. / Ph. D.
2

A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes

Mechaii, Idir 26 April 2012 (has links)
In this thesis, we present a simple and efficient \emph{a posteriori} error estimation procedure for a discontinuous finite element method applied to scalar first-order hyperbolic problems on structured and unstructured tetrahedral meshes. We present a local error analysis to derive a discontinuous Galerkin orthogonality condition for the leading term of the discretization error and find basis functions spanning the error for several finite element spaces. We describe an implicit error estimation procedure for the leading term of the discretization error by solving a local problem on each tetrahedron. Numerical computations show that the implicit \emph{a posteriori} error estimation procedure yields accurate estimates for linear and nonlinear problems with smooth solutions. Furthermore, we show the performance of our error estimates on problems with discontinuous solutions. We investigate pointwise superconvergence properties of the discontinuous Galerkin (DG) method using enriched polynomial spaces. We study the effect of finite element spaces on the superconvergence properties of DG solutions on each class and type of tetrahedral elements. We show that, using enriched polynomial spaces, the discretization error on tetrahedral elements having one inflow face, is O(h^{p+2}) superconvergent on the three edges of the inflow face, while on elements with one inflow and one outflow faces the DG solution is O(h^{p+2}) superconvergent on the outflow face in addition to the three edges of the inflow face. Furthermore, we show that, on tetrahedral elements with two inflow faces, the DG solution is O(h^{p+2}) superconvergent on the edge shared by two of the inflow faces. On elements with two inflow and one outflow faces and on elements with three inflow faces, the DG solution is O(h^{p+2}) superconvergent on two edges of the inflow faces. We also show that using enriched polynomial spaces lead to a simpler{a posterior error estimation procedure. Finally, we extend our error analysis for the discontinuous Galerkin method applied to linear three-dimensional hyperbolic systems of conservation laws with smooth solutions. We perform a local error analysis by expanding the local error as a series and showing that its leading term is O( h^{p+1}). We further simplify the leading term and express it in terms of an optimal set of polynomials which can be used to estimate the error. / Ph. D.
3

Uncertainty Quantification and Numerical Methods for Conservation Laws

Pettersson, Per January 2013 (has links)
Conservation laws with uncertain initial and boundary conditions are approximated using a generalized polynomial chaos expansion approach where the solution is represented as a generalized Fourier series of stochastic basis functions, e.g. orthogonal polynomials or wavelets. The stochastic Galerkin method is used to project the governing partial differential equation onto the stochastic basis functions to obtain an extended deterministic system. The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain viscosity. We investigate well-posedness, monotonicity and stability for the stochastic Galerkin system. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability. We investigate the impact of the total spatial operator on the convergence to steady-state.  Next we apply the stochastic Galerkin method to Burgers' equation with uncertain boundary conditions. An analysis of the truncated polynomial chaos system presents a qualitative description of the development of the solution over time. An analytical solution is derived and the true polynomial chaos coefficients are shown to be smooth, while the corresponding coefficients of the truncated stochastic Galerkin formulation are shown to be discontinuous. We discuss the problematic implications of the lack of known boundary data and possible ways of imposing stable and accurate boundary conditions. We present a new fully intrusive method for the Euler equations subject to uncertainty based on a Roe variable transformation. The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, it is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. A multiwavelet basis that can handle  discontinuities in a robust way is used. Finally, we investigate a two-phase flow problem. Based on regularity analysis of the generalized polynomial chaos coefficients, we present a hybrid method where solution regions of varying smoothness are coupled weakly through interfaces. In this way, we couple smooth solutions solved with high-order finite difference methods with non-smooth solutions solved for with shock-capturing methods.
4

The Discontinuous Galerkin Material Point Method : Application to hyperbolic problems in solid mechanics / Extension de la Méthode des Points Matériels à l'approximation de Galerkin Discontinue : Application aux problèmes hyperboliques en mécanique des solides

Renaud, Adrien 14 December 2018 (has links)
Dans cette thèse, la Méthode des Points Matériels (MPM) est étendue à l’approximation de Galerkin Discontinue (DG) et appliquée aux problèmes hyperboliques en mécanique des solides. La méthode résultante (DGMPM) a pour objectif de suivre précisément les ondes dans des solides subissant de fortes déformations et dont les modèles constitutifs dépendent de l’histoire du chargement. A la croisée des méthodes de types éléments finis et volumes finis, la DGMPM s’appuie sur une grille de calcul arbitraire dans laquelle des flux sont calculés au moyen de solveurs de Riemann approximés sur les arêtes entre les éléments. L’intérêt de ce type de solveurs est qu’ils permettent l’introduction de la structure caractéristique des solutions des équations aux dérivées partielles hyperboliques directement dans le schéma numérique. Les analyses de stabilité et de convergence ainsi que l’illustration de la méthode sur des simulations de problèmes unidimensionnels et bidimensionnels montrent que le schéma numérique permet d’améliorer le suivi des ondes par rapport à la MPM. Par ailleurs, un deuxième objectif poursuivi dans cette thèse consiste à caractériser la réponse des solides élastoplastiques à des sollicitations dynamiques en deux dimensions en vue d’améliorer la résolution numérique de ces problèmes. Bien qu’un certain nombre de travaux aient déjà été menés dans cette direction, les problèmes étudiés se limitent à des cas particuliers. Un cadre unifié pour l’étude de la propagation d’ondes simples dans les solides élastoplastiques en déformations et contraintes plane est proposé dans cette thèse. Les trajets de chargement suivis à l’intérieur de ces ondes simples sont de plus analysés. / In this thesis, the material point method (MPM) is extended to the discontinuous Galerkin approximation (DG) and applied to hyperbolic problems in solid mechanics. The resulting method (DGMPM) aims at accurately following waves in finite-deforming solids whose constitutive models may depend on the loading history. Merging finite volumes and finite elements methods, the DGMPM takes advantage of an arbitrary computational grid in which fluxes are evaluated at element faces by means of approximate Riemann solvers. This class of solvers enables the introduction of the characteristic structure of the solutions of hyperbolic partial differential equations within the numerical scheme. Convergence and stability analyses, along with one and two-dimensional numerical simulations,demonstrate that this approach enhances the MPM ability to track waves. On the other hand, a second purpose has been followed: it consists in identifying the response of two-dimensional elastoplastic solids to dynamic step-loadings in order to improve numerical results on these problems. Although some studies investigated similar questions, only particular cases have been treated. Thus,a generic framework for the study of the propagation of simple waves in elastic-plastic solids under plane stress and plane strain problems is proposed in this thesis. The loading paths followed inside those simple waves are further analyzed.
5

Méthodes isogéométriques pour les équations aux dérivées partielles hyperboliques / Isogeometric methods for hyperbolic partial differential equations

Gdhami, Asma 17 December 2018 (has links)
L’Analyse isogéométrique (AIG) est une méthode innovante de résolution numérique des équations différentielles, proposée à l’origine par Thomas Hughes, Austin Cottrell et Yuri Bazilevs en 2005. Cette technique de discrétisation est une généralisation de l’analyse par éléments finis classiques (AEF), conçue pour intégrer la conception assistée par ordinateur (CAO), afin de combler l’écart entre la description géométrique et l’analyse des problèmes d’ingénierie. Ceci est réalisé en utilisant des B-splines ou des B-splines rationnelles non uniformes (NURBS), pour la description des géométries ainsi que pour la représentation de champs de solutions inconnus.L’objet de cette thèse est d’étudier la méthode isogéométrique dans le contexte des problèmes hyperboliques en utilisant les fonctions B-splines comme fonctions de base. Nous proposons également une méthode combinant l’AIG avec la méthode de Galerkin discontinue (GD) pour résoudre les problèmes hyperboliques. Plus précisément, la méthodologie de GD est adoptée à travers les interfaces de patches, tandis que l’AIG traditionnelle est utilisée dans chaque patch. Notre méthode tire parti de la méthode de l’AIG et la méthode de GD.Les résultats numériques sont présentés jusqu’à l’ordre polynomial p= 4 à la fois pour une méthode deGalerkin continue et discontinue. Ces résultats numériques sont comparés pour un ensemble de problèmes de complexité croissante en 1D et 2D. / Isogeometric Analysis (IGA) is a modern strategy for numerical solution of partial differential equations, originally proposed by Thomas Hughes, Austin Cottrell and Yuri Bazilevs in 2005. This discretization technique is a generalization of classical finite element analysis (FEA), designed to integrate Computer Aided Design (CAD) and FEA, to close the gap between the geometrical description and the analysis of engineering problems. This is achieved by using B-splines or non-uniform rational B-splines (NURBS), for the description of geometries as well as for the representation of unknown solution fields.The purpose of this thesis is to study isogeometric methods in the context of hyperbolic problems usingB-splines as basis functions. We also propose a method that combines IGA with the discontinuous Galerkin(DG)method for solving hyperbolic problems. More precisely, DG methodology is adopted across the patchinterfaces, while the traditional IGA is employed within each patch. The proposed method takes advantageof both IGA and the DG method.Numerical results are presented up to polynomial order p= 4 both for a continuous and discontinuousGalerkin method. These numerical results are compared for a range of problems of increasing complexity,in 1D and 2D.
6

Contributions to the development of residual discretizations for hyperbolic conservation laws with application to shallow water flows

Ricchiuto, Mario 12 December 2011 (has links) (PDF)
In this work we review 12 years of developments in the field of residual based discretizations for hyperbolic problems and their application to the solution of the shallow water equations. Fundamental concepts related to the topic are recalled and he construction of second and higher order schemes for steady problems is presented. The generalization to time dependent problems by means of multi-step implicit time integration, space-time, and genuinely explicit techniques is thoroughly discussed. Finally, the issues of C-property, super consistency, and wetting/drying are analyzed in this framework showing the power of the residual based approach.

Page generated in 0.0175 seconds