Spelling suggestions: "subject:"hyperbolische"" "subject:"hyperbolischen""
1 |
A kinetic model for grain growthHenseler, Reiner 21 September 2007 (has links)
In dieser Arbeit wird eine detaillierte Analysis des konsistenten kinetischen Modells zum Kornwachstum von Fradkov durchgeführt. Dieses Modell beschreibt - basierend auf dem von Neumann--Mullins Gesetz - die Flächenänderung eines Korns abhängig von seiner Topologieklasse, d.h. der Anzahl der Kanten. Topologieänderungen werden durch Kopplungsterme zwischen den Gleichungen für die Anzahldichten der verschiedenen Topologieklassen beschrieben. Daraus resultiert ein unendlich-dimensionales System von Transportgleichungen mit tridiagonaler Kopplungsstruktur. Durch eine spezielle Wahl des Kopplungsgewichts, welche die Gleichungen nichtlinear und räumlich nichtlokal macht, wird das Modell konsistent. Nach einer Einführung wird das Modell von Fradkov im zweiten Kapitel hergeleitet; formale Rechnungen zeigen die Konsistenz des Modells auf. Im dritten Kapitel wird das Kopplungsgewicht a priori beschränkt. Dadurch kann im ersten Teil des vierten Kapitels Existenz und Eindeutigkeit von Lösungen für endlich-dimensionale Systeme gezeigt werden. Weitere Schranken an die Anzahldichten im fünften Kapitel ermöglichen den Grenzübergang hinsichtlich der Anzahl der Gleichungen im zweiten Teil des vierten Kapitels. Die Existenz von Lösungen des unendlich-dimensionalen Systems wird somit über eine geeignete Approximation gezeigt. Energiemethoden liefern Eindeutigkeit und stetige Abhängigkeit von den Daten. Im sechsten Kapitel wird das Langzeitverhalten untersucht. Besonderes Augenmerk liegt dabei auf stationären Lösungen eines reskalierten Systems als Kandidaten für selbstähnliche Lösungen. Abschließend wird das Lewis''sche Gesetz asymptotisch verifiziert. / The subject matter of this thesis is a detailed analysis of the self--consistent kinetic model for grain growth introduced by Fradkov. The model is based on the von Neumann--Mullins law describing the change of area of grains according to their topological class, i.e. the number of edges they have. Topological events are performed by coupling terms between equations for the number densities of different topological classes. The resulting system of transport equations is infinite-dimensional with a tridiagonal coupling structure. Self-consistency of this kinetic model is achieved by introducing a coupling''s weight making the equations nonlinear and nonlocal in space. We start with an introduction in the first chapter. Afterwards in the second chapter we derive Fradkov''s model and carry out formal calculations to illustrate self-consistency. In the third chapter we present a priori calculations mainly allowing us to bound the nonlinearity. This enables us to prove existence and uniqueness of solutions to finite-dimensional systems in the first part of the fourth chapter. Further bounds on the number densities established in the fifth chapter allow for passing to the limit concerning the number of equations in the second part of the fourth chapter. Therefore we prove existence of solutions to the infinite-dimensional system by a suitable approximation procedure. Uniqueness and continuous dependence on the data is then provided by energy methods. The sixth chapter focusses on long-time behaviour and mainly on stationary solutions of a rescaled system as candidates for self-similar solutions. Finally we prove Lewis'' law asymptotically.
|
2 |
Oscillatory Solutions to Hyperbolic Conservation Laws and Active Scalar Equations / Oszillierende Lösungen von hyperbolischen Erhaltungsgleichungen und aktiven skalaren GleichungenKnott, Gereon 12 September 2013 (has links) (PDF)
In dieser Arbeit werden zwei Klassen von Evolutionsgleichungen in einem Matrixraum-Setting studiert: Hyperbolische Erhaltungsgleichungen und aktive skalare Gleichungen. Für erstere wird untersucht, wann man Oszillationen mit Hilfe polykonvexen Maßen ausschließen kann; für Zweitere wird mit Hilfe von Oszillationen gezeigt, dass es unendlich viele periodische schwache Lösungen gibt.
|
3 |
Oscillatory Solutions to Hyperbolic Conservation Laws and Active Scalar EquationsKnott, Gereon 09 September 2013 (has links)
In dieser Arbeit werden zwei Klassen von Evolutionsgleichungen in einem Matrixraum-Setting studiert: Hyperbolische Erhaltungsgleichungen und aktive skalare Gleichungen. Für erstere wird untersucht, wann man Oszillationen mit Hilfe polykonvexen Maßen ausschließen kann; für Zweitere wird mit Hilfe von Oszillationen gezeigt, dass es unendlich viele periodische schwache Lösungen gibt.
|
Page generated in 0.0481 seconds