• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 47
  • 10
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 327
  • 144
  • 132
  • 111
  • 72
  • 70
  • 60
  • 55
  • 54
  • 47
  • 45
  • 38
  • 38
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Control Relevant Modeling and Design of Scramjet-Powered Hypersonic Vehicles

January 2012 (has links)
abstract: This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
122

Substrate-Independent Nanomaterial Deposition Via Hypersonic Impaction

January 2015 (has links)
abstract: In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage of exciting and novel applications, the world of nanomaterials suffers from a lack of large scale manufacturing techniques. The current methods and equipment used for manufacturing nanomaterials are generally slow, expensive, potentially dangerous, and material specific. The research and widespread use of nanomaterials has undoubtedly been hindered by this lack of appropriate tooling. This work details the effort to create a novel nanomaterial synthesis and deposition platform capable of operating at industrial level rates and reliability. The tool, referred to as Deppy, deposits material via hypersonic impaction, a two chamber process that takes advantage of compressible fluids operating in the choked flow regime to accelerate particles to up several thousand meters per second before they impact and stick to the substrate. This allows for the energetic separation of the synthesis and deposition processes while still behaving as a continuous flow reactor giving Deppy the unique ability to independently control the particle properties and the deposited film properties. While the ultimate goal is to design a tool capable of producing a broad range of nanomaterial films, this work will showcase Deppy's ability to produce silicon nano-particle films as a proof of concept. By adjusting parameters in the upstream chamber the particle composition was varied from completely amorphous to highly crystalline as confirmed by Raman spectroscopy. By adjusting parameters in the downstream chamber significant variation of the film's density was achieved. Further it was shown that the system is capable of making these adjustments in each chamber without affecting the operation of the other. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
123

Parametric Analysis of a Hypersonic Inlet using Computational Fluid Dynamics

January 2013 (has links)
abstract: For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be noticeable if laminar flow was assumed. Mach numbers up to 20 are investigated to study the effects of vibrational and chemical non-equilibrium on compressor performance. A direct impact on the trends on the kinetic energy efficiency and compressor efficiency was found due to dissociation. / Dissertation/Thesis / M.S. Aerospace Engineering 2013
124

Experimental Studies on Shock-Shock Interactions in Hypersonic Shock Tunnels

Khatta, Abhishek January 2016 (has links) (PDF)
Shock-shock interactions are among the most basic gas-dynamic problem, and are almost unavoidable in any high speed light, where shock waves generating from different sources crosses each other paths. These interactions when present very close to the solid surface lead to very high pressure and thermal loads on the surface. The related practical problem is that experienced at the cowl lip of a scramjet engine, where the interfering shock waves leads to high heat transfer rates which may also lead to the damage of the material. The classification by Edney (1968) on the shock-shock interaction patterns based on the visualization has since then served the basis for such studies. Though the problem of high heating on the surface in the vicinity of the shock-shock interactions has been studied at length at supersonic Mach numbers, the study on the topic at the hypersonic Mach numbers is little sparse. Even in the studies at hypersonic Mach numbers, the high speeds are not simulated, which is the measure of the kinetic energy of the ow. Very few experimental studies have addressed this problem by simulating the energy content of the ow. Also, some of the numerical studies on the shock-shock interactions suggest the presence of unsteadiness in the shock-shock interaction patterns as observed by Edney (1968), though this observation is not made very clearly in the experimental studies undertaken so far. In the present study, experiments are carried out in a conventional shock tunnel at Mach number of 5.62 (total enthalpy of 1.07 MJ/kg; freestream velocity of 1361 m/s), with the objective of mapping the surface pressure distribution and surface convective heat transfer rate distribution on the hemispherical body in the presence of the shock-shock interactions. A shock generator which is basically a wedge of angle = 25 , is placed at some dis-dance in front of the hemispherical body such that the planar oblique shock wave from the shock generator hits the bow shock wave in front of the hemi-spherical body. The relative distance between the wedge tip and the nose of the hemispherical body is allowed to change in di erent experiments to capture the whole realm of shock-shock interaction by making the planar oblique shock wave interact with the bow shock wave at different locations along its trajectory. The study results in a bulk of data for the surface pressure and heat transfer rates which were obtained by placing 5 kulites pressure transducers, 1 PCB pressure transducer and 21 platinum thin lm gauges along the surface of the hemispherical body in a plane normal to the freestream velocity direction. Along with the measurement of the surface pressure and the surface heat transfer rates, the schlieren visualization is carried out to capture the shock waves, expansion fans, slip lines, present in a certain shock-shock interaction pattern and the measured values were correlated with the captured schlieren images to evaluate the ow build up and steady and useful test time thereby helping in understanding the ow physics in the presence of the shock-shock interactions. From the present study it has been observed that in the presence of Edney Type-I and Edney Type-II interaction, the heat transfer rates on the hemi-spherical body are symmetrical about the centerline of the body, with the peak heating at the centerline which drops towards the shoulder. For Edney Type-III, Edney Type-IV, Edney Type-V and Edney Type-VI interaction pattern, the distribution in not symmetrical and shifts in peak heat transfer rates being on the side of the hemispherical from which planar oblique shock wave is incident. Also, it is observed that for the interactions which appear within the sonic circle, Edney Type-III and Edney Type-IV, the heat transfer rates observe an unsteadiness, such that the gauges located close to the interaction region experiencing varying heat transfer rates during the useful test time of the shock tunnel. Few experiments were conducted at Mach 8.36 (total enthalpy of 1.29 MJ/kg; freestream velocity of 1555.25 m/s) and Mach 10.14 (total enthalpy of 2.67 MJ/kg; freestream velocity of 2258.51 m/s) for the con gurations representing Edney Type-III interaction pattern to further evaluate the unsteady nature observed at Mach 5.62 ows. The unsteadiness was evident in both the cases. It is realized that the short test times in the shock tunnels pose a constraint in the study of unsteady flow fields, and the use of tailored mode operation of shock tunnel can alleviate this constraint. Also, limited number of experiments in the present study, which are carried out in a Free Piston Shock Tunnel, helps to understand the need to conduct such study in high enthalpy test conditions.
125

Thermo-Mechanical Evaluation Of Ceramic Matrix CompositesIn a Near Hypersonic Burner Rig Facility

Hoffman, Leland C. 14 November 2021 (has links)
No description available.
126

Development of a cantilever beam, capacitive sensing, skin friction gage and supporting instrumentation for measurements

Horváth, István January 1993 (has links)
M.S.
127

UTILIZATION OF ADDITIVE MANUFACTURING IN THE DEVELOPMENT OF STATIONARY DIFFUSION SYSTEMS FOR AEROENGINE CENTRIFUGAL COMPRESSORS

Adam Thomas Coon (16379487) 15 June 2023 (has links)
<p> Rising costs and volatility in aviation fuel and increased regulations resulting from climate change  concerns have driven gas turbine engine manufacturers to focus on reducing fuel consumption.  Implementing centrifugal compressors as the last stage in an axial engine architecture allows for  reduced core diameters and higher fuel efficiencies. However, a centrifugal compressor's  performance relies heavily on its stationary diffusion system. Furthermore, the highly unsteady  and turbulent flow field exhibited in the diffusion system often causes CFD models to fall short of  reality. Therefore, rapid validation is required to match the speed at which engineers can simulate  different diffuser designs utilizing CFD. One avenue for this is through the use of additive  manufacturing in centrifugal compressor experimental research. This study focused on implementing a new generation of the Centrifugal Stage for Aerodynamic  Research (CSTAR) at the Purdue Compressor Research Lab that utilizes an entirely additively  manufactured diffusion system. In addition, the new configuration was used to showcase the  benefits of additive manufacturing (AM) in evaluating diffusion components. Two diffusion  systems were manufactured and assessed. The Build 2 diffusion system introduced significant  modifications to the diffusion system compared to the Build 1 design. The modifications included changes to the diffuser vane geometry, endwall divergence, and increased deswirl pinch and vane  geometries. The Build 2 diffusion system showed performance reductions in total and static  pressure rise, flow range, and efficiencies. These results were primarily attributed to the changes  made to the Build 2 diffuser. The end wall divergence resulted in end wall separation that caused  increased losses. The changes to the diffuser vane resulted in increased throat blockage and lower  pressure rise and mass flow rate. In addition to the experimental portion of this study, a computational study was conducted to study  the design changes made to the Build 2 diffusion system. A speedline at 100% corrected rotational  speed was solved, and the results were compared to experimental data. The simulated data matched  the overall stage and diffusion system performance relatively well, but the internal flow fields of  the diffusion components, namely the diffuser, were not well predicted. This was attributed to  16 using the SST turbulence model over BSL EARSM. The BSL EARSM model more accurately  predicted the diffuser flow field to the SST model.  </p>
128

"Design and Characterization of Mach 5 Flow for Higly Turbulent Hypersonic Test Facility

Thornton, Mason R 01 January 2021 (has links)
In this paper, an array of converging-diverging nozzles in parallel is designed to create a highly turbulent, sufficiently mixed flow for the study of turbulent-compressibility effects and assist in the ongoing work of oblique detonation wave (ODW) research. Several nozzle array candidates were designed with varying numbers of nozzles and nozzle sizes and evaluated using computational fluid dynamics to determine which candidate produced the most viable conditions for investigating turbulent compressibility effects. Conditions and design restrictions of the nozzle arrays were tailored to the conditions set in the Hypersonic Wind Tunnel, which is located at the Propulsion and Energy Research Lab at the University of Central Florida.
129

Design of a Surrogate Hypersonic Inlet for the HIFIRE-6 Configuration

Mileski, Joseph W. 26 August 2022 (has links)
No description available.
130

One Dimensional Analysis Program for Scramjet and Ramjet Flowpaths

Tran, Kathleen 03 February 2011 (has links)
One-Dimensional modeling of dual mode scramjet and ramjet flowpaths is a useful tool for scramjet conceptual design and wind tunnel testing. In this thesis, modeling tools that enable detailed analysis of the flow physics within the combustor are developed as part of a new one-dimensional MATLAB-based model named VTMODEL. VTMODEL divides a ramjet or scramjet flow path into four major components: inlet, isolator, combustor, and nozzle. The inlet module provides two options for supersonic inlet one-dimensional calculations; a correlation from MIL Spec 5007D, and a kinetic energy efficiency correlation. The kinetic energy efficiency correlation also enables the user to account for inlet heat transfer using a total temperature term in the equation for pressure recovery. The isolator model also provides two options for calculating the pressure rise and the isolator shock train. The first model is a combined Fanno flow and oblique shock system. The second model is a rectangular shock train correlation. The combustor module has two options for the user in regards to combustion calculations. The first option is an equilibrium calculation with a "growing combustion sphere" combustion efficiency model, which can be used with any fuel. The second option is a non-equilibrium reduced-order hydrogen calculation which involves a mixing correlation based on Mach number and distance from the fuel injectors. This model is only usable for analysis of combustion with hydrogen fuel. Using the combustion reaction models, the combustor flow model calculates changes in Mach number and flow properties due to the combustion process and area change, using an influence coefficient method. This method also can take into account heat transfer, change in specific heat ratio, change in enthalpy, and other thermodynamic properties. The thesis provides a description of the flow models that were assembled to create VTMODEL. In calculated examples, flow predictions from VTMODEL were compared with experimental data obtained in the University of Virginia supersonic combustion wind tunnel, and with reported results from the scramjet models SSCREAM and RJPA. Results compared well with the experiment and models, and showed the capabilities provided by VTMODEL. / Master of Science

Page generated in 0.0678 seconds