Spelling suggestions: "subject:"illposedness"" "subject:"wellposedness""
11 |
Local Ill-Posedness and Source Conditions of Operator Equations in Hilbert SpacesHofmann, B., Scherzer, O. 30 October 1998 (has links)
The characterization of the local ill-posedness and the local degree of nonlinearity are of particular importance for the stable solution of nonlinear ill-posed problems. We present assertions concerning the interdependence between the ill-posedness of the nonlinear problem and its linearization. Moreover, we show that the concept of the degree of nonlinearity com bined with source conditions can be used to characterize the local ill-posedness and to derive a posteriori estimates for nonlinear ill-posed problems. A posteriori estimates are widely used in finite element and multigrid methods for the solution of nonlinear partial differential equations, but these techniques are in general not applicable to inverse an ill-posed problems. Additionally we show for the well-known Landweber method and the iteratively regularized Gauss-Newton method that they satisfy a posteriori estimates under source conditions; this can be used to prove convergence rates results.
|
12 |
Ill-Posedness Aspects of Some Nonlinear Inverse Problems and their LinearizationsFleischer, G., Hofmann, B. 30 October 1998 (has links) (PDF)
In this paper we deal with aspects of
characterizing the ill-posedn ess of nonlinear
inverse problems based on the discussion of
specific examples. In particular, a parameter
identification problem to a second order
differential equation and its ill-posed
linear components are under consideration.
A new approach to the classification
ofill-posedness degrees for multiplication
operators completes the paper.
|
13 |
Le problème de Cauchy pour les systèmes quasi-linéaires faiblement hyperboliques ou non-hyperboliques en régularité Gevrey / The Cauchy problem for nearly hyperbolic or no-hyperbolic quasi-linear systems in Gevrey regularityMorisse, Baptiste 12 July 2017 (has links)
Nous considérons dans cette thèse le problème de Cauchy pour des systèmes d'EDP quasilinéaires, du premier ordre. Dans le cas initialement elliptique, c'est-à-dire un spectre non-réel pour le symbole principal du système à t=0, nous prouvons un résultat d'instabilité au sens d'Hadamard. La preuve est basée sur la construction d'une famille de solutions présentant une croissance exponentielle en temps et fréquence. Cette famille invalide la régularité Hölder du flot, partant d'espaces de Gevrey vers L². Nous prouvons un résultat analogue pour différents cas de transition de l'hyperbolique vers l'elliptique, avec une restriction possible sur l'indice Gevrey pour lequel l'instabilité est observée. Dans un second temps, nous considérons le cas faiblement hyperbolique et semilinéaire. Grâce à des estimations d'énergie dans les espaces de Gevrey et à la construction d'un symétriseur adapté, nous prouvons le caractère localement bien-posé pour un tel système. Pour ce faire, nous utilisons et démontrons aussi un résultat d'action d'opérateurs pseudo-différentiels dont le symbole possède une régularité Gevrey dans la variable d'espace. / We consider the Cauchy problem for first-order, quasilinear systems of PDEs. In the initially elliptic case, that is when the principal symbol of the system has nonreal spectrum at time t=0, we prove an instability result in the sense of Hadamard. The proof is based on the construction of a family of exact solutions which exhib an exponential growth, both in time and frequency. That family leads to a defect of Hölder regularity of the flow, starting from evrey spaces to L² space. We prove analogous results for some cases of transition from hyperbolicity to ellipticity, with a potential restriction on the Gevrey index for which we may observe the instability. In a second time, we consider weakly hyperbolic systems. Thanks to an energy estimate in Gevrey spaces and the construction of a suitable symetriser, we prove local well-posedness for such a system. In doing so we use and prove a result on actions of pseudo-differential operators whose symbols have Gevrey regularity in the spatial variable
|
14 |
Some stability results of parameter identification in a jump diffusion modelDüvelmeyer, Dana 06 October 2005 (has links)
In this paper we discuss the stable solvability of the inverse problem of parameter identification in a jump diffusion model. Therefore we introduce the forward
operator of this inverse problem and analyze its properties. We show continuity of
the forward operator and stability of the inverse problem provided that the domain
is restricted in a specific manner such that techniques of compact sets can be exploited. Furthermore, we show that there is an asymptotical non-injectivity which
causes instability problems whenever the jump intensity increases and the jump
heights decay simultaneously.
|
15 |
On multiplication operators occurring in inverse problems of natural sciences and stochastic financeHofmann, Bernd 07 October 2005 (has links)
We deal with locally ill-posed nonlinear operator equations F(x) = y in L^2(0,1),
where the Fréchet derivatives A = F'(x_0) of the nonlinear forward operator F are
compact linear integral operators A = M ◦ J with a multiplication operator M
with integrable multiplier function m and with the simple integration operator J.
In particular, we give examples of nonlinear inverse problems in natural sciences
and stochastic finance that can be written in such a form with linearizations that
contain multiplication operators. Moreover, we consider the corresponding ill-posed
linear operator equations Ax = y and their degree of ill-posedness. In particular,
we discuss the fact that the noncompact multiplication operator M has only a
restricted influence on this degree of ill-posedness even if m has essential zeros of
various order.
|
16 |
About an autoconvolution problem arising in ultrashort laser pulse characterizationBürger, Steven January 2014 (has links)
We are investigating a kernel-based autoconvolution problem, which has its origin in the physics of ultra short laser pulses. The task in this problem is to reconstruct a complex-valued function $x$ on a finite interval from measurements of its absolute value and a kernel-based autoconvolution of the form [[F(x)](s)=int k(s,t)x(s-t)x(t)de t.]
This problem has not been studied in the literature. One reason might be that one has more information than in the classical autoconvolution case, where only the right hand side is available. Nevertheless we show that ill posedness phenomena may occur. We also propose an algorithm to solve the problem numerically and demonstrate its performance with artificial data. Since the algorithm fails to produce good results with real data and we suspect that the data for $|F(x)|$ are not dependable we also consider the whole problem with only $arg(F(x))$ given instead of $F(x)$.
|
17 |
Ill-Posedness Aspects of Some Nonlinear Inverse Problems and their LinearizationsFleischer, G., Hofmann, B. 30 October 1998 (has links)
In this paper we deal with aspects of
characterizing the ill-posedn ess of nonlinear
inverse problems based on the discussion of
specific examples. In particular, a parameter
identification problem to a second order
differential equation and its ill-posed
linear components are under consideration.
A new approach to the classification
ofill-posedness degrees for multiplication
operators completes the paper.
|
18 |
New results on the degree of ill-posedness for integration operators with weightsHofmann, Bernd, von Wolfersdorf, Lothar 16 May 2008 (has links)
We extend our results on the degree of ill-posedness for linear integration opera-
tors A with weights mapping in the Hilbert space L^2(0,1), which were published in
the journal 'Inverse Problems' in 2005 ([5]). Now we can prove that the degree one
also holds for a family of exponential weight functions. In this context, we empha-
size that for integration operators with outer weights the use of the operator AA^*
is more appropriate for the analysis of eigenvalue problems and the corresponding
asymptotics of singular values than the former use of A^*A.
|
19 |
On Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces: On Ill-Posedness and Local Ill-Posedness of OperatorEquations in Hilbert SpacesHofmann, B. 30 October 1998 (has links)
In this paper, we study ill-posedness concepts of nonlinear and linear inverse problems
in a Hilbert space setting. We define local ill-posedness of a nonlinear operator
equation $F(x) = y_0$ in a solution point $x_0$ and the interplay between the nonlinear
problem and its linearization using the Frechet derivative $F\acent(x_0)$ . To find an
appropriate ill-posedness concept for the linarized equation we define intrinsic
ill-posedness for linear operator equations $Ax = y$ and compare this approach with
the ill-posedness definitions due to Hadamard and Nashed.
|
20 |
About a deficit in low order convergence rates on the example of autoconvolutionBürger, Steven, Hofmann, Bernd 18 December 2013 (has links) (PDF)
We revisit in L2-spaces the autoconvolution equation x ∗ x = y with solutions which are real-valued or complex-valued functions x(t) defined on a finite real interval, say t ∈ [0,1]. Such operator equations of quadratic type occur in physics of spectra, in optics and in stochastics, often as part of a more complex task. Because of their weak nonlinearity deautoconvolution problems are not seen as difficult and hence little attention is paid to them wrongly. In this paper, we will indicate on the example of autoconvolution a deficit in low order convergence rates for regularized solutions of nonlinear ill-posed operator equations F(x)=y with solutions x† in a Hilbert space setting. So for the real-valued version of the deautoconvolution problem, which is locally ill-posed everywhere, the classical convergence rate theory developed for the Tikhonov regularization of nonlinear ill-posed problems reaches its limits if standard source conditions using the range of F (x† )∗ fail. On the other hand, convergence rate results based on Hölder source conditions with small Hölder exponent and logarithmic source conditions or on the method of approximate source conditions are not applicable since qualified nonlinearity conditions are required which cannot be shown for the autoconvolution case according to current knowledge. We also discuss the complex-valued version of autoconvolution with full data on [0,2] and see that ill-posedness must be expected if unbounded amplitude functions are admissible. As a new detail, we present situations of local well-posedness if the domain of the autoconvolution operator is restricted to complex L2-functions with a fixed and uniformly bounded modulus function.
|
Page generated in 0.0404 seconds