• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 42
  • 32
  • 19
  • 11
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 391
  • 391
  • 385
  • 120
  • 115
  • 102
  • 100
  • 76
  • 70
  • 54
  • 42
  • 37
  • 36
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

[en] INSTANTANEOUS LIQUID VELOCITY FIELD MEASUREMENTS IN TWO-PHASE INTERMITTENT FLOW THROUGH HORIZONTAL AND INCLINED PIPES / [pt] MEDIÇÃO DO CAMPO INSTANTÂNEO DE VELOCIDADE DO LÍQUIDO NO ESCOAMENTO BIFÁSICO INTERMITENTE EM TUBOS HORIZONTAIS E INCLINADOS

ROBERTO DA FONSECA JUNIOR 22 March 2010 (has links)
[pt] No presente trabalho foi realizado um estudo experimental sobre escoamento bifásico em regime intermitente através de tubos horizontais e de pequena inclinação, com o objetivo de determinação dos campos de velocidade instantâneos nas regiões a montante do nariz, a jusante da cauda das bolhas de gás, assim como na região do filme de líquido sob as bolhas. Foi implementada uma combinação de três técnicas ópticas não invasivas. Velocimetria por Imagem de Partículas bi-dimensional (Particle Image Velocimetry – PIV) foi utilizada para determinar os campos de velocidade instantâneos nas regiões de interesse, enquanto luz de fundo pulsada e sincronizada proveniente de uma matriz de LED’s vermelhos iluminava os contornos das bolhas aumentando o contraste das interfaces líquido-gás (Pulsed Shadow Technique – PST). Uma técnica baseada na fluorescência induzida por laser foi utilizada (Laser Induced Fluorescence - LIF) para separar a luz verde intensa proveniente do laser associado à técnica PIV. Os testes foram conduzidos em seção transparente tendo água e ar como fluidos de trabalho. Os resultados obtidos revelaram informações detalhadas sobre o escoamento de líquido no escoamento intermitente. Foram produzidos também resultados estatísticos de algumas variáveis globais do escoamento como, a velocidade e os comprimentos das bolhas e pistões de líquido, além da frequência de passagem desta estruturas do escoamento. / [en] instantaneous liquid velocity fields at the film, nose and tail regions of slugs in horizontal and inclined two phase flow. To this end, a combination of three nonintrusive optical techniques was employed. Two-dimensional particle image velocimetry (PIV) was used to measure the instantaneous liquid velocity field at a meridional plane of the horizontal pipe test section, while a synchronized pulsed back lighting, provided by a matrix of red LED s, illuminated the bubble contours thereby enhancing contrast of the interfaces (Pulsed Shadow Technique - PST). A laser-induced fluorescence technique (LIF) was employed to separate the strong reflections coming from the gas-liquid interfaces produced by the green PIV laser, The tests were conducted on a specially built transparent pipe test section, using air and water as the working fluids. The velocity fields were obtained for flow regimes where the slugs were lightly aerated. The velocity field results in the nose, tail and film regions revealed valuable detailed information that helped to better understand the physics of the flow, besides contributing to the formation of a data bank for supporting the development of two-phase, horizontal slug flow simulations. The work conducted also provided statistical information on the main global variables that characterize the flow, such as, speed and length of gas bubbles and liquid slugs, and the frequency of passage of these structures.
292

Influence of asymmetric valve timing strategy on in-cylinder flow of the internal combustion engine

Butcher, Daniel S. A. January 2016 (has links)
Variable Valve Timing (VVT) presents a powerful tool in the relentless pursuit of efficiency improvements in the internal combustion engine. As the valves have such ultimate control over the gas exchange processes, extensive research effort in this area has shown how valve event timing can be manipulated to reduce engine pumping losses, fuel consumption and engine out emissions. Pumping losses may be significantly reduced by use of throttleless strategies, making use of intake valve duration for load control, while alternative cycles such as the Miller cycle allow modification of the effective compression ratio. More recently, the value of single valve operation in part load conditions is exploited, bringing with it the concept of asymmetric valve lifts. Work in this area found the side effect of asymmetric valve operation is a significant change in the behaviour of the in-cylinder flow structures, velocities and turbulence intensity. Work presented in this thesis exploits asymmetric valve strategies to modify the in-cylinder flow conditions. The Proper Orthogonal Decomposition (POD) is a method employed in the fluids dynamics field to facilitate the separation of coherent motion structures from the turbulence. In the presented work, the application of POD to in-cylinder flow analysis is further developed by the introduction of a novel method for identifying the POD modes representative of coherent motion and those representative of the turbulence. A POD mode correlation based technique is introduced and developed, with the resulting fields showing evidence of coherence and turbulence respectively. Experimental tests are carried out using a full length optically accessible, single cylinder research engine equipped with a fully variable valve train (FVVT) to allow full control of both valve timing and lift. In-cylinder flow is measured through the use of Particle Image Velocimetry (PIV) at several crank angle timings during the intake stroke whilst the engine is operated under a range of asymmetric valve strategies. The exhaust valves and one intake valve have their respective schedules fixed, while the second intake valve schedule is adjusted to 80\%, 60\%, 40\%, 20\%, 0\% lift. The resulting PIV fields are separated into coherent motion and turbulence using the developed technique, allowing for analysis of each constituent independently. The coherent element gives insight to large scale flows, often of the order of magnitude of the cylinder. These structures not only give a clear indication of the overall motion and allow assessment of flow characteristics such as swirl and tumble ratio, but the variation in the spatial location of these structures provides additional insight to the cyclic to cycle variation (CCV) of the flow, which would not otherwise be possible due to the inclusion of the turbulent data. Similarly, with the cyclic variation removed from the turbulent velocity field, a true account of the fluctuating velocity, u' and derived values such as the Turbulent Kinetic Energy (TKE) may be gained. Results show how manipulation of a one intake valve timing can influence both the large scale motions and the turbulence intensity. By the reduction of lift, the swirl ratio is increased almost linearly as the typical counter-rotating vortex pair becomes asymmetric, before a single vortex structure is observed in the lowest lift cases. A switching mechanism between the two is identified and found to be responsible for increased levels of CCV. With the reduction in lift, TKE is observed not only to increase, but change the spatial distribution of turbulence. Of course, the reduction in valve lift comes with the penalty of a reduced valve curtain area. However, it was identified both in literature and throughout this study that the reduction in lift did not negatively influence the engine breathing as the same trapped mass was achieved under all cases with no adjustment of manifold pressure. While literature shows both bulk motion and turbulence are key in liquid fuel break-up during the intake stroke, the mixing effects under port-injected natural gas were investigated experimentally using Laser Induced Fluorescence (LIF). The valve strategy was found to have no significant effect on the mixture distribution at the time of spark.
293

Axially Homogeneous Turbulent Convection at High Rayleigh Numbers : Scaling Laws for Flux and Spectra

Pawar, Shashikant S January 2015 (has links) (PDF)
Natural turbulent convection studies encompass a wide range of flows occurring in nature, for example, atmospheric and oceanic flows, con-vection in the Earth’s mantle, convection in the stars and also in many engineering applications. Rayleigh-Benard convection (RBC), i.e. con-vection in a horizontal fluid layer confined between two plates with a temperature differential maintained across them, has been a proto-type problem in the studies of turbulent natural convection. Many small scale and global features of the flow in the turbulent regime of RBC are known, yet the flow dynamics is not fully understood, es-pecially at high Rayleigh numbers (Ra). Present work comprises of experimental investigations of a different type of flow, high Rayleigh number turbulent convection in a long vertical tube (abbreviated as tube convection or TC). The tube of aspect ratio (length to diameter) of about 10, open at both the ends interconnects two large tanks. The flow driven by an unstable density difference created between the two tanks, has some unique features, different from RBC. The net flow at any tube cross-section is zero and the time averages of the velocities, the Reynolds shear stress and the mean shear are also zero. Turbu-lent energy production is therefore solely due to buoyancy. The flow is axially homogeneous and axisymmetric. In the homogeneous region, the mean density gradient is linear. Rayleigh number in TC is conve-niently defined based on the mean (linear) density gradient (denoted by Rag). Two sets of experiments are carried out. In one set of experiments, the density difference is created using brine and fresh water and in another set, it is created using heat. The ranges of Rag achieved are 3 × 108 < Rag < 8 × 109 in the experiments using salt (Schmidt number, Sc ≈ 600) and 5 × 104 < Rag < 5 × 106 in the experiments using heat (Prandtl number, P r ≈ 6). From the measured salt and heat fluxes in both the sets of experiments, the non dimensional flux 1 1 scaling above a certain value of Rag is obtained as N ug ∼ Rag2 P r 2 and from the velocity measurements in the experiments using salt, the 1 Reynolds number scaling is obtained as Re ∼ Rag2 P r− 12 . Both these are as per the predicted scalings by the mixing length model proposed by Arakeri et al. (2000) for high Rag convection in the vertical tube. The flux scaling N u ∼ (RaP r)2 , also known as the ‘ultimate regime’ of convection, expected at very high Ra but not yet observed in the experiments in classical RBC, is easily achieved in TC at relatively lower values of Ra. The fluxes and Reynolds numbers in TC are orders of magnitude higher as compared to those obtained in RBC for similar values of Ra and P r. In the lower range of Rag values for P r ≈ 6, a transition to a new flux scaling, N u ∼ (RaP r)0.29 is found. Similar transitions are also found to be present in the results of Tovar (2002) for Sc ≈ 600 and in the DNS results of Schmidt et al. (2012) for P r = 1, at different values of Rag. Collecting all these data, it is shown that the transition occurs at a fixed Grashof number of 1.6 × 105, independent of P r. Velocity measurements are carried out using particle image velocime-try (PIV) in the salt experiments. Kinetic energy spectra computed from the velocity fields are presented for the locations from the tube axis to the wall, for the lowest and the highest values of Rag achieved in the experiments. The spatial energy spectrum of lateral velocity at the tube axis follows Kolmogorov-Obukhov (KO) scaling (−5/3 scaling exponent) while the spatial spectrum of longitudinal velocity shows a scaling slightly higher than −5/3 but lower than −11/5 (the Bolgiano-Obukhov (BO) scaling). The scalar spectra is computed from the concentration fields obtained from planar laser induced fluorescence (PLIF) in the experiments using salt, and also from the temperature measurements from the experiments using heat. Both the concentra-tion and temperature fluctuations spectra show some evidence of dual scaling - BO scaling (−7/5 scaling exponent) in the inertial subrange followed by Obukhov-Corrsin (OC) scaling (−5/3 scaling exponent) over a narrow range of scales. Light propagation through the buoyancy driven turbulent flow in TC has also been experimentally investigated. Light propagation through convective turbulence is encountered in many situations. In some cases e.g. in observational astronomy it is undesirable, while in some other cases it is useful, e.g. in remote sensing of meteorological parameters. In the present study, light intensity and angle of arrival fluctuations in a parallel beam of light are measured. Laser shadowgraphy is used in the intensity measurements while the angle of arrival is obtained by measuring deflections of narrow laser beams, created by passing collimated laser light through a mask having equispaced grid of holes. Background oriented schlieren (BOS) measurements have also been carried out to obtain the displacements, which are proportional to the angle of arrivals. The equations for frequency spectrum of intensity and angle of arrival from the literature, developed for isotropic, ho-mogeneous turbulent media, are modified for the flow in the present case and the asymptotic scalings for high and low frequency ranges are obtained. The scalings in the frequency spectra computed from the measurements of intensity and angle of arrival fluctuations are com-pared with the obtained asymptotic scalings. The results from the present work are also compared with results from studies in the atmo-sphere and lab experiments.
294

Prédiction et modélisation d’écoulements turbulents proche de paroi / Modeling and prediction of near wall turbulent flows

Srinath, Sricharan 19 December 2017 (has links)
Le but de ce travail est d'étudier une couche limite soumise à un gradient de pression et de la comparer avec une couche limite de plaque plane à grands nombres de Reynolds. Dans ce cadre, l’accent est mis sur le comportement des structures cohérentes à grande échelle. En raison de leur grande longueur, ces structures ne sont pas faciles à extraire et à caractériser en utilisant des techniques de mesure standard. Pour cette raison, des dispositifs expérimentaux spécifiques utilisant la PIV dans les plans longitudinaux et parallèles à la paroi ont été conçus pour capturer les structures à grande échelle et pour mieux comprendre les mécanismes régissant la dynamique de ces écoulements. La première partie revisite les résultats obtenus sur une couche limite plaque plane en sondant l'origine d'une décroissance spectrale en dans la couche limite turbulente. Dans cette perspective, un modèle simpliste basé sur le modèle de Townsend-Perry est proposé. Ce modèle peut, en principe, être appliqué à n'importe quel écoulement turbulent de paroi. La deuxième partie se concentre sur l'amélioration de la compréhension de la turbulence en gradient de pression adverse en effectuant une caractérisation complète d’un écoulement académique au dessus d’une géométrie. L’accent est mis sur les caractéristiques des structures (longueur, scaling, contribution énergétique et distribution selon la normale à la paroi) ainsi que sur l'influence du gradient de pression adverse sur les structures des grandes échelles. L'analyse permet de comparer le comportement d'une couche limite en présence de gradient de pression adverse avec le cas d’une plaque plane à grands nombres de Reynolds / The aim of the present work is to study a boundary layer subjected to a pressure gradient and to compare it with a zero pressure gradient (ZPG) boundary layer at high Reynolds numbers. Within this framework, focus is laid on the behaviour of large-scale coherent structures. Due to their large streamwise extent, these structures are not easy to extract and characterize using standard measurement techniques. For this reason, specific experimental set-ups using PIV in the streamwise/wall-normal planes was designed to capture the large-scale structures and to gain more insight into the mechanisms governing the dynamics of these flows. The achievements of the present investigation can be divided into two parts. The first part revisits the results obtained on a ZPG turbulent boundary layer by probing the origin of a spectral range in a turbulent boundary layer. To this end, a simple model which can in principle be applied to various wall-bounded turbulent flows is proposed from a new perspective based on the work of Townsend-Perry. The second part focuses on improving the understanding of turbulence under an adverse pressure gradient (APG) by performing a complete flow characterisation of an academic test case on a large scale geometry. Emphasis is laid on the characteristics of the structures (length, scaling, energetic contribution and their wall normal distribution) along with the influence of the APG on the large-scale structures. The analysis is also extended to compare the behaviour of APG with the ZPG case at high Reynolds numbers
295

[en] STUDY OF FLOW AND HEAT TRANSFER CHARACTERISTICS IN A SWIRLING IMPINGING JET / [pt] ESTUDO DO ESCOAMENTO E TRANSFERÊNCIA DE CALOR EM UM JATO ESPIRALADO INCIDENTE

JULIANA KUHLMANN ABRANTES 26 October 2005 (has links)
[pt] O presente trabalho é um estudo experimental das características de um escoamento de ar em forma de jato espiralado, incidindo ortogonalmente sobre uma placa. Os objetivos do estudo são: avaliar a influência da presença de uma componente circunferencial de velocidade na distribuição dos coeficientes locais de troca de calor, obter campos de velocidade instantâneos no plano axissimétrico assim como informações sobre as características da turbulência no escoamento. Durante os experimentos se investigou a influência da distância jato/placa e da intensidade do escoamento espiralado (número de Swirl). Como etapa preliminar, foi conduzido um experimento de jato livre, para validação das técnicas de medição de velocidade utilizadas. Os resultados foram comparados com os da literartura e uma boa concordância foi obtida. A distribuição espacial dos coeficientes de troca de calor foi avaliada impondo-se um fluxo de calor constante na placa e medindo a distribuição radial de temperatura através de diversos termopares. Coeficientes locais puderam então ser estimados. Os campos de velocidades radial e axial instantâneos foram adquiridos experimentalmente através da utilização da técnica de Particle Image Velocimetry (PIV) e perfis de velocidade tangencial (média e flutuações) foram obtidos a partir da técnica Laser Doppler Velocimetry (LDV). Os resultados mostraram que os padrões de escoamento mudam significativamente quando a componente circunferencial de velocidade é introduzida. Para o valor mais alto do Número de Swirl foram verificadas fortes reversões do escoamento na região de estagnação. / [en] The present work is an experimental study of the characteristics of a swirling impinging air jet. The goals of the study are: to evaluate the influence of the presence of a circumferential velocity component in the distribution of the local heat transfer coefficients, to obtain instantaneous velocity fields in the axisymmetric plane, as well as information about the turbulence characteristics in the flow. During the experiments, the influence of the impingement distance and swirl intensity were investigated. As a preliminary validation of the velocity measurement tecniques, an experimental investigation of an axisymmetric free jet was conducted. The results were compared with literature showing good agreement. The spatial distribution of heat transfer coefficients was evaluated by imposing a constant heat flux condition to the plate and measuring temperature of several points along the radial distance of the plate with thermocouples. Local coefficients could then be estimated. Instantaneous axial and radial velocity fields were obtained with Particle Image Velocimetry (PIV) and tangential velocity profiles (mean and fluctuations) obtained by using Laser Doppler Velocimetry (LDV). The results showed that the flow patterns change significantly when the tangential component is added. For the highest value of Swirl number, strong recirculation zones were observed in the stagnation region.
296

[en] FILM - SPLITTING FLOWS OF VISCOELASTIC LIQUIDS VISUALIZATION / [pt] CARACTERIZAÇÃO DO ESCOAMENTO DE LÍQUIDOS VISCOELÁSTICOS NO PROCESSO DE REVESTIMENTO POR ROTAÇÃO DIRETA

MELISA YVONE ZAMBRANO BECERRA 26 October 2005 (has links)
[pt] O processo de deposição de uma fina camada de líquido sobre um substrato em movimento é conhecido como processo de revestimento. Um das técnicas mais utilizadas é o Revestimento por Rotação Direta, devido a sua simplicidade e baixo custo de instalação e operação. A baixas velocidades, o escoamento na região de aplicação do líquido é bi- dimensional e permanente. Porem quando a velocidade é elevada o escoamento bi- dimensional torna-se instável, levando a um escoamento tri-dimensional, com variação da espessura do filme de líquido depositado ao longo da largura do substrato. Este tipo de instabilidade é comunmente denominado Ribbing, e limita a velocidade do processo dependendo dos requisitos de uniformidade de espessura. Geralmente, os líquidos utilizados neste processo são soluções poliméricas, os que apresentam um comportamento não Newtoniano. Foi demonstrado, para líquidos Newtonianos, que o gradiente da pressão perto do menisco destabiliza o escoamento. O parâmetro crítico para o aparecimento da instabilidade é o número de capilaridade. Para líquidos viscoelásticos o comportamento do escoamento muda dramaticamente, o inicio das instabilidades ocorre a bem menores números de capilaridade quando é comparado ao caso Newtoniano. O mecanismo pelo qual a elasticidade desestabiliza o escoamento perto da superfície livre ainda não é completamente entendido. Predições recentes mostraram que a zona de recirculação perto do menisco presente para líquidos Newtonianos, diminui e desaparece posteriormente a medida que o escoamento torna-se mais viscoelástico (aumento do Número de Weissenberg). O objetivo deste trabalho é verificar experimentalmente este fenômeno e determinar o efeito das propriedades viscoelásticas do líquido no processo. Para isso, o escoamento entre uma placa estacionaria e o cilindro girante é analisado experimentalmente visualizando a região perto da superfície livre e medindo o campo de velocidade usando a técnica de Velocimetria por Imagem de Partículas (PIV).Diferentes soluções de baixo peso molecular polietileno glicol (PEG), e alto peso molecular oxido de polietileno (PEO), característica elástica, em agua foram usados para avaliar o efeito da viscoelasticidade no comportamento do escoamento. Com este analises experimental se quer confirmar la prediçao teórica de Zevallos(2003) sobre o efeito da viscoelasticidade nas linhas de corrente e na estabilidade da superfície livre com respeito às perturbaçoes tri-dimensionais. / [en] Roll coating is a common method in the manufacture of a wide variety of products. It is used to apply a thin liquid layer to a continuous flexible substrate. At low speeds, the flow is two-dimensional and steady; as the roll speed is raised, the two-dimensional flow is unstable and is replaced by a steady three-dimensional flow, which results in more or less regular stripes in the machine direction. This type of the instability is commonly called ribbing, it can limit the speed of the process if a smooth film is required as a final product. The liquids used in this process generaly are polimeric solutions, which present Non-Newtonian behavior. It was demonstrated, for Newtonian liquids, that the gradient of the pressure close to the meniscus destabilizes the flow, whereas the surface tension has a stabilizing effect. The critical parameter for the flow stability is the capillary number. For viscoelastic liquids can drastically change the nature of the flow near the free surfaces of the coating bead. The onset of the instabilities occurs at much lower capillary numbers than Newtonian flow case, which falls with the growth of the elasticity. Accurate theoretical predictions of the onset of ribbing when viscoelastic liquids are used is still not available. The mechanisms by which the liquid elasticity makes the flow unstable at Capillary numbers much lower than in the Newtonian case is not completely understood. Recent theoretical predictions have shown that at high Weissenberg number, the recirculation zone, present in the Newtonian flow completely disappears. In this work, film splitting flows between a stationary plate and rotating roll are analyzed experimentally by visualizing the free surface configuration and measuring the velocity field using the Particle Image Velocimetry (PIV) technique. Various solutions of low molecular weight polyethylene glycol (PEG) and high molecular weight polyethylene oxide (PEO) in water were used in order to evaluate the effect of mildly viscoelastic behavior on the flow. The goal was to confirm the theoretical predictions of Zevallos et al. (2004) on the effect of the liquid viscoelasticity on the streamline pattern and on the stability of the free surface with respect to three-dimensional disturbances.
297

Acoustic absorption and the unsteady flow associated with circular apertures in a gas turbine environment

Rupp, Jochen January 2013 (has links)
This work is concerned with the fluid dynamic processes and the associated loss of acoustic energy produced by circular apertures within noise absorbing perforated walls. Although applicable to a wide range of engineering applications particular emphasis in this work is placed on the use of such features within a gas turbine combustion system. The primary aim for noise absorbers in gas turbine combustion systems is the elimination of thermo-acoustic instabilities, which are characterised by rapidly rising pressure amplitudes which are potentially damaging to the combustion system components. By increasing the amount of acoustic energy being absorbed the occurrence of thermo-acoustic instabilities can be avoided. The fundamental acoustic characteristics relating to linear acoustic absorption are presented. It is shown that changes in orifice geometry, in terms of gas turbine combustion system representative length-to-diameter ratios, result in changes in the measured Rayleigh Conductivity. Furthermore in the linear regime the maximum possible acoustic energy absorption for a given cooling mass flow budget of a conventional combustor wall will be identified. An investigation into current Rayleigh Conductivity and aperture impedance (1D) modelling techniques are assessed and the ranges of validity for these modelling techniques will be identified. Moreover possible improvements to the modelling techniques are discussed. Within a gas turbine system absorption can also occur in the non-linear operating regime. Hence the influence of the orifice geometry upon the optimum non-linear acoustic absorption is also investigated. Furthermore the performance of non-linear acoustic absorption modelling techniques is evaluated against the conducted measurements. As the amplitudes within the combustion system increase the acoustic absorption will transition from the linear to the non-linear regime. This is important for the design of absorbers or cooling geometries for gas turbine combustion systems as the propensity for hot gas ingestion increases. Hence the relevant parameters and phenomena are investigated during the transition process from linear to non-linear acoustic absorption. The unsteady velocity field during linear and non-linear acoustic absorption is captured using particle image velocimetry. A novel analysis technique is developed which enables the identification of the unsteady flow field associated with the acoustic absorption. In this way an investigation into the relevant mechanisms within the unsteady flow fields to describe the acoustic absorption behaviour of the investigated orifice plates is conducted. This methodology will also help in the development and optimisation of future damping systems and provide validation for more sophisticated 3D numerical modelling methods. Finally a set of design tools developed during this work will be discussed which enable a comprehensive preliminary design of non-resonant and resonant acoustic absorbers with multiple perforated liners within a gas turbine combustion system. The tool set is applied to assess the impact of the gas turbine combustion system space envelope, complex swirling flow fields and the propensity to hot gas ingestion in the preliminary design stages.
298

A Study On Boundary Layer Transition Induced By Large Freestream Disturbances

Mandal, Alakesh Chandra 12 1900 (has links) (PDF)
The initial slow viscous growth of the Tollmein-Schlichting wave in a canonical boundary layer transition is absent in bypass and wake-induced transitions. Although there have been a great deal of studies pertaining to bypass transition in boundary layers, the underlying breakdown mechanism is not clearly understood and it continues to be a subject of interest. Similarly, a wake-induced transition caused by Karman wake in the freestream remains poorly understood. The breakdown in this case is caused by anisotropic disturbances containing large scale unsteadiness in the freestream. Differing view points among workers on the transition process have also added to the complexities. In this thesis, bypass and wake-induced boundary layer transitions studied experimentally towards understanding various flow breakdown features are reported. The measurements were made on a flat plate boundary layer in a low-speed wind tunnel. The particle image velocimetry (PIV) technique was extensively used. Various grids were used to generate nearly isotropic freestream turbulence. A circular cylinder was placed at different heights from the plate leading edge to generate Karman wake in the freestream. Two cylinders of different diameters were used to vary the Reynolds number(based on the cylinder diameter). The PIV measurements being simultaneous over a large spatial domain enabled to assess various spatial transitional flow structures. In the case of bypass transition, the streamwise velocity fluctuation, u, is found to exhibit some organized negative and positive fluctuations that dominate the flow during transition, and confirm the simulation results reported in the literature. These positive and negative u fluctuations are found to be associated with the streak unsteadiness. By conditional sampling of these positive and negative u fluctuations, we find that urms (root-mean-squaredof u)can be expressed as a linear combination of urms,f and urms,b,i.e. urms = a(urms,f + urms,b); ais constant, and the subscripts fand bdenote the positive and nega-tive ufluctuations, respectively. Both urms,f and urms,b arefoundto follow the non-modal growth distribution. The wall-normal results clearly show that an inclined shear layer is often associated with an organized structure of negative ufluctuations and an inflectional in-stantaneous velocity profile. These inclined shear layers appear to be similar to those in ribbon-induced transition. The turbulent spot precursor appears to be the vortex shedding from an oscillating in-clined shear layer. Interestingly, the normalized vortex shedding fre-quency is found to be Reynolds number invariant, as in the case of ribbon-induced transition. The present study also confirms the sim-ulated turbulent spot features, including a thin log-law at the break-down stage. The spanwise plane PIV results reveal the signature of streak secondary instability in the flow in terms of symmetric and anti-symmetric streaks oscillations. The initial growth of streak amplitude is followed by a slow decay. The maximum streak amplitude is well above30% of the freestream velocity. These two aspects provide support to the streak instability analysis reported in the literature. While the present wake-induced transition study provides some sup-port to the available numerical simulation and experimental results, some new results have also emerged. The measured sharp rise in the disturbance energy during transition is found to be closer to the simulated result, compared to the difference reported in the literature. The spanwise vortices in the early stage, as also seen in other experimental studies, deform leading to the formation of lambda structures, the signature of which is found by the linear stochastic analysis. With increased Reynolds number and decreased cylinder height from the plate, the physical size of the lambda structure is found to decrease. These lambda structures are often found to appear in a staggered manner in the spanwise plane, as in the case of sub-harmonic boundary layer transition. Although a sub-harmonic peak in the frequency spectra is reported in the literature, as also in the present study, the clear staggered pattern went unnoticed. Streamwise streaks are subsequently generated due to the mean shear stretching of these lambda vortices. The spanwise spacing of these streamwise streaks is found to be comparable with the recent simulation results. Also, these streaks are found to undergo somewhat sinuous-like oscillations, compared to the only varicose type oscillations reported in the literature. The streak amplitude is found to saturate at about 35% of the freestream speed. Here again an inclined shear layer in the wall-normal plane is associated with organized negative u fluctuations and an inflectional instantaneous velocity profile. The movement of the peak urms towards the wall is found to be due to the positive u fluctuation, which follows a hairpin-like structure. The inclined shear layers herein are associated with the lambda or a hairpin-like structure. As in a by-pass transition, an inclined shear layer, vortex shedding from it, the imprint of which is also found in the linear stochastic analysis are present. The normalized high frequency shed vortices is found to be Reynolds number invariant in the present wake-induced transition, as in ribbon-induced and bypass transitions. Compared to the re-cent suggestion that the parent-offspring mechanism is the governing self-sustaining mechanism in the boundary layer, the present study suggests that streak-instability mechanism is also present. The proper orthogonal decomposition(POD) analysis of the experimental data was carried out with an emphasis on the bypass transition case studied. The first few energetic POD modes are found to capture the dominant flow structures, i.e. the organized positive and negative u fluctuations. In the case of bypass transition, the first two energetic POD modes are self-similar, i.e. independent of the freestream turbulent intensity and the Reynolds number. An attempt is also made to construct a low-dimensional model with the POD eigenfunction modes to predict the qualitative dynamics of bypass transition. This has revealed the existence of a traveling disturbance in the bypass transition. On the whole, the present study shows some similar breakdown features in bypass and wake-induced transitions, although more studies in this regard are essential.
299

Experiments On Rolling Sphere Submerged In An Incompressible Fluid

Verekar, Pravin Kishor 11 1900 (has links) (PDF)
Experiments are done using a smooth solid rigid homogeneous acrylic sphere rolling on an inclined plane which is submerged in water. The motivation for these experiments comes from a need to understand a class of solid-fluid interaction problems that include sediment transport, movement of gravel on ocean floor and river bed due to water currents. Experiments are performed in a glass water tank 15 cm wide by 14 cm deep by 61 cm long which can be tilted to desired angle. The sphere is released from rest on the inclined false bottom of the tank in quiescent water. Our experimental study has twofold aim: (1)to study the boundary layer separation, the three-dimensional eddying motion in the wake and the near-wake structure and(2) to establish hydrodynamic force coefficients by analyzing kinematical data of the sphere motion from start to till it attains terminal velocity. Experiments are carried out at moderate Reynolds number Rearound1500. Previous studies on the first problem exist in the literature for Reup to 350. Previous studies on the second problem do not clearly define the added-mass coefficient and the influence of the water tank side-walls on the drag coefficient. In the first study, the characterization of the wake is done using flow visualization methods (fluoresce in dye visualization and particle streak visualization) and Particle Image Velocimetry (PIV). Laser light sheet obtained from an argon ion continuous laser beam is taken in different orientations to illuminate the fluoresce in dye or 14 m silver-coated hollow glass spheres. These experiments show that the wake behind the rolling sphere up to 1.6 diameters (or 1.6D) downstream is confined within height 1.2Dand width1.2D. At about 1.8Ddownstream, the wake sways alternately on either side of the equatorial plane, moving in lateral-vertical direction and moving out of the confining region; this gives zigzag appearance to the wake. Also in these experiments, we observe that the flow separations from the surface of the rolling sphere show three separation zones. The eddies shed from the primary separation surface on the upper hemisphere are symmetrical about the equatorial plane with Strouhal number St=1.0. The primary separation is affected by the symmetrical secondary separations on the rear surface in the piggyback region — it is the region near the upper rear surface of the sphere behind the transverse equatorial plane and below the primary separation surface. The lower eddies below the primary separation zone are shed alternately on either side of the equatorial plane with shedding frequency St=0.5. Our experiments show that there is a viscous blockage of width 0.4Dat the crevice near the point of contact. On either side of the viscous blockage at the crevice, we see weak symmetric eddies. Based on our experimental observations, we proceed to build a simple physical model of the separated flow on the surface of the rolling sphere. In the second study, the motion of the sphere is photographed and paired data of the displacement and time is obtained for the sphere motion from the start of motion till terminal velocity is reached at about 4.5 sphere diameters from the point of release of the sphere. Equation of motion of the sphere is solved numerically treating added-mass coefficient Ca and drag coefficient Cd as parameters. Experimental data is fitted on these solutions and the best fit gives the values of the force coefficients. Theoretical value of Ca equal to 0.621 is confirmed experimentally. Value of Cd is found to be 1.23 at Re=990 and it is 1.06 at Re= 1900. Side-wall effects become important for ratio of diameter of sphere to width of tank greaterthan0.20.
300

Wing-tip Vortex Structure and Wandering

Pentelow, Steffen L. January 2014 (has links)
An isolated wing-tip vortex from a square-tipped NACA 0012 wing at an angle of attack of 5 degrees was studied in a water tunnel at a chord based Reynolds number of approximately 24000. Measurements were taken using stereo particle image velocimetry at three measurement planes downstream of the wing under each of three freestream turbulence conditions. The amplitude of wandering of the vortex axis increased with increasing distance downstream of the wing and with increasing freestream turbulence intensity. The magnitude of the peak azimuthal velocity decreased with increasing distance from the wing as well as with increases in the freestream turbulence intensity. The streamwise velocity in the vortex core was less than the freestream velocity in all cases. Time resolved histories of the instantaneous waveform shape and location of the vortex axis were determined from sequences of images of fluorescent dye released from the wing.

Page generated in 0.1868 seconds