• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 13
  • 4
  • 3
  • 3
  • Tagged with
  • 116
  • 55
  • 40
  • 26
  • 23
  • 20
  • 18
  • 18
  • 18
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Exploring the Functional Relevance of Polymorphisms within the CD14 and IRF-1 Gene for Promoter Activity by Haplotype-Specific Chromatin Immunoprecipitation (HaploChIP)

Mertens, Jasmin 19 January 2011 (has links)
No description available.
92

Molekulare Charakterisierung des COPS5-Gens und seines Genproduktes als Kandidat für die Spastische Spinalparalyse / Molecular characterisation of the COPS5 Gen and its Gen Product as a candidate for the spastic paraplegia

Eisenberg, André 07 March 2011 (has links)
No description available.
93

The role of the peptidyl prolyl isomerase Rrd1 in the transcriptional stress response

Poschmann, Jeremie 08 1900 (has links)
La régulation de la transcription est un processus complexe qui a évolué pendant des millions d’années permettant ainsi aux cellules de s’adapter aux changements environnementaux. Notre laboratoire étudie le rôle de la rapamycine, un agent immunosuppresseur et anticancéreux, qui mime la carence nutritionelle. Afin de comprendre les mécanismes impliqués dans la réponse a la rapamycine, nous recherchons des mutants de la levure Saccaromyces cerevisiae qui ont un phenotype altérée envers cette drogue. Nous avons identifié le gène RRD1, qui encode une peptidyl prolyl isomérase et dont la mutation rend les levures très résistantes à la rapamycine et il semble que se soit associé à une réponse transcriptionelle alterée. Mon projet de recherche de doctorat est d’identifier le rôle de Rrd1 dans la réponse à la rapamycine. Tout d’abord nous avons trouvé que Rrd1 interagit avec l’ARN polymérase II (RNAPII), plus spécifiquement avec son domaine C-terminal. En réponse à la rapamycine, Rrd1 induit un changement dans la conformation du domaine C-terminal in vivo permettant la régulation de l’association de RNAPII avec certains gènes. Des analyses in vitro ont également montré que cette action est directe et probablement liée à l’activité isomérase de Rrd1 suggérant un rôle pour Rrd1 dans la régulation de la transcription. Nous avons utilisé la technologie de ChIP sur micropuce pour localiser Rrd1 sur la majorité des gènes transcrits par RNAPII et montre que Rrd1 agit en tant que facteur d’élongation de RNAPII. Pour finir, des résultats suggèrent que Rrd1 n’est pas seulement impliqué dans la réponse à la rapamycine mais aussi à differents stress environnementaux, nous permettant ainsi d’établir que Rrd1 est un facteur d’élongation de la transcription requis pour la régulation de la transcription via RNAPII en réponse au stress. / Transcriptional regulation is a complex process that has evolved over millions of years of evolution. Cells have to sense environmental conditions and adapt to them by altering their transcription. Herein, we study the role of rapamycin, an immunosuppressant and anticancer molecule that mimics cellular starvation. To understand how the action of rapamycin is mediated, we analyzed gene deletion mutants in the yeast Saccharomyces cerevisiae that have an altered response to this drug. Deletion of RRD1, a gene encoding a peptidyl prolyl isomerase, causes strong resistance to rapamycin and this was associated with a role of Rrd1 in the transcriptional response towards rapamycin. The main focus of my PhD was therefore to unravel the role of Rrd1 in response to rapamycin. First, we discovered that Rrd1 interacts with RNA polymerase II (RNAPII), more specifically with its C-terminal domain and we showed that in response to rapamycin, Rrd1 alters the structure of this C-terminal domain. This phenomenon was confirmed to be directly mediated by Rrd1 in vitro, presumably through its peptidyl prolyl isomerase activity. Further, we demonstrated that Rrd1 is capable of altering the occupancy of RNAPII on genes in vivo and in vitro. With the use of ChIP on chip technology, we show that Rrd1 is actually a transcription elongation factor that is associated with RNAPII on actively transcribed genes. In addition, we demonstrate that Rrd1 is indeed required to regulate the expression of a large subset of genes in response to rapamycin. This data let us propose a novel mechanism by which Rrd1 regulates RNAPII during transcription elongation. Finally, we provide evidence that Rrd1 is not only required for an efficient response towards rapamycin but to a larger variety of environmental stress conditions, thus establishing Rrd1 as a transcriptional elongation factor required to fine tune the transcriptional stress response of RNAPII.
94

Étude du réseau d'interactions entre les protéines du Virus de l'Hépatite C

Racine, Marie-Eve January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
95

Involvement of the Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF) in the Hepatitis Delta Virus (HDV) RNA-Templated Transcription

Zhang, Da Jiang 13 May 2014 (has links)
Hepatitis delta virus (HDV) is the smallest known mammalian RNA virus, containing a genome of ~ 1700 nt. Replication of HDV is extremely dependent on the host transcription machinery. Previous studies indicated that RNA polymerase II (RNAPII) directly binds to and forms an active preinitiation complex on the right terminal stem-loop fragment (R199G) of HDV genomic RNA, and that the polypyrimidine tract-binding protein-associated splicing factor (PSF) directly binds to the same region. Further studies demonstrated that PSF also binds to the carboxyl-terminal domain (CTD) of RNAP II. In my thesis, co-immunoprecipitation assays were performed to show that PSF stimulates the interaction of RNAPII with R199G. Results of co-immunoprecipitation experiments also suggest that both the RNA recognition motif 2 (RRM2) and N-terminal proline-rich region (PRR) of PSF are required for the interaction between PSF and RNAPII, while the two RNA recognition motifs (RRM1 and RRM2) might be required for the interaction of PSF with R199G. Furthermore, in vitro run-off transcription assays suggest that PSF facilitates the HDV RNA transcription from the R199G template. Together, the above experiments suggest that PSF might act as a transcription factor for the RNAPII transcription of HDV RNA by linking the CTD of RNAPII and the HDV RNA promoter. My experiments provide a better understanding of the mechanism of HDV RNA-dependent transcription by RNAP II.
96

Involvement of the Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF) in the Hepatitis Delta Virus (HDV) RNA-Templated Transcription

Zhang, Da Jiang January 2014 (has links)
Hepatitis delta virus (HDV) is the smallest known mammalian RNA virus, containing a genome of ~ 1700 nt. Replication of HDV is extremely dependent on the host transcription machinery. Previous studies indicated that RNA polymerase II (RNAPII) directly binds to and forms an active preinitiation complex on the right terminal stem-loop fragment (R199G) of HDV genomic RNA, and that the polypyrimidine tract-binding protein-associated splicing factor (PSF) directly binds to the same region. Further studies demonstrated that PSF also binds to the carboxyl-terminal domain (CTD) of RNAP II. In my thesis, co-immunoprecipitation assays were performed to show that PSF stimulates the interaction of RNAPII with R199G. Results of co-immunoprecipitation experiments also suggest that both the RNA recognition motif 2 (RRM2) and N-terminal proline-rich region (PRR) of PSF are required for the interaction between PSF and RNAPII, while the two RNA recognition motifs (RRM1 and RRM2) might be required for the interaction of PSF with R199G. Furthermore, in vitro run-off transcription assays suggest that PSF facilitates the HDV RNA transcription from the R199G template. Together, the above experiments suggest that PSF might act as a transcription factor for the RNAPII transcription of HDV RNA by linking the CTD of RNAPII and the HDV RNA promoter. My experiments provide a better understanding of the mechanism of HDV RNA-dependent transcription by RNAP II.
97

Sierra platinum: a fast and robust peak-caller for replicated ChIP-seq experiments with visual quality-control and -steering

Müller, Lydia, Gerighausen, Daniel, Farman, Mariam, Zeckzer, Dirk January 2016 (has links)
Background: Histone modifications play an important role in gene regulation. Their genomic locations are of great interest. Usually, the location is measured by ChIP-seq and analyzed with a peak-caller. Replicated ChIP-seq experiments become more and more available. However, their analysis is based on single-experiment peak-calling or on tools like PePr which allows peak-calling of replicates but whose underlying model might not be suitable for the conditions under which the experiments are performed. Results: We propose a new peak-caller called \"Sierra Platinum\" that allows peak-calling of replicated ChIP-seq experiments. Moreover, it provides a variety of quality measures together with integrated visualizations supporting the assessment of the replicates and the resulting peaks, as well as steering the peak-calling process. Conclusion: We show that Sierra Platinum outperforms currently available methods using a newly generated benchmark data set and using real data from the NIH Roadmap Epigenomics Project. It is robust against noisy replicates.
98

Analytical Approaches to Neurodegenerative Disease Protein Aggregation

Wiberg, Henning January 2011 (has links)
<p>QC 20110615</p>
99

From <i>In Vitro</i> to <i>In Vivo:</i> Control of C-Reactive Protein Gene Expression by Cytokines

Young, Duprane Pedaci 04 February 2008 (has links)
No description available.
100

mdm2 Amplification in NIH3T3L1 Preadipocytes Leads to Mdm2 Elevation in Terminal Adipogenesis

Litteral, Vaughn 23 July 2008 (has links)
No description available.

Page generated in 0.1129 seconds