• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 23
  • 15
  • 12
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 103
  • 103
  • 32
  • 31
  • 28
  • 22
  • 21
  • 18
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Návrh elektrického stroje 6 kW, 120 000 ot/min pro turbo-cirkulátor hélia / Design of Electrical Machine 6 kW, 120 000 rpm for Helium Turbo-Circulator

Bárta, Jan January 2018 (has links)
The induction machine with a squirrel cage is a workhorse of the industry. The main advantage of an induction machine is the low manufacturing price, simple and robust construction, low maintenance requirements. However, for high-speed applications, induction machine with a squirrel cage requires design modification due to the mechanical restrictions. The objective of this thesis is to show design process, methodology and assembly of the induction machine for high-speed applications. In this thesis, the rotor dimensioning data are presented. The results are demonstrated on the design of the 6 kW, 120 000 rpm solid rotor squirrel cage induction machine. This thesis also contains calculation and design of three different electrical machine topologies for a turbo circulator application. The electrical machines are designed with 6 kW output power at 120 000 rpm. The machines are estimated by using electromagnetic, thermal, and mechanical calculations. The drawbacks and advantages of each topology under study are described. For other high-speed applications, a comparative method helps in choosing the suitable electrical machine topology by examinations of discussed criteria. Rotor design effect on the electromagnetic performance of the induction machine is shown. Mechanical stresses are calculated with Finite Element Method analysis. Various assembly technologies to produce solid rotor with squirrel cage are discuss and compare. Describe approach enables high electromagnetic performance and durable construction of the high-speed induction machine. Work is confirmed by measurement on the manufactured prototype.
102

Finite element and electrical circuit modelling of faulty induction machines: Study of internal effects and fault detection techniques / Modélisation par éléments finis et par équations de circuits des machines asynchrones en défaut: Etude des effets internes et techniques de détection de défauts

Sprooten, Jonathan 21 September 2007 (has links)
This work is dedicated to faulty induction motors. These motors are often used in industrial applications thanks to their usability and their robustness. However, nowadays optimisation of production becomes so critical that the conceptual reliability of the motor is not sufficient anymore. Motor condition monitoring is expanding to serve maintenance planning and uptime maximisation. Moreover, the use of drive control sensors (namely stator current and voltage) can avoid the installation and maintenance of dedicated sensors for condition monitoring.<p><p>Many authors are working in this field but few approach the diagnosis from a detailed and clear physical understanding of the localised phenomena linked to the faults. Broken bars are known to modulate stator currents but it is shown in this work that it also changes machine saturation level in the neighbourhood of the bar. Furthermore, depending on the voltage level, this change in local saturation affects the amplitude and the phase of the modulation. This is of major importance as most diagnosis techniques use this feature to detect and quantify broken bars. For stator short-circuits, a high current is flowing in the short-circuited coil due to mutual coupling with the other windings and current spikes are flowing in the rotor bars as they pass in front of the short-circuited conductors. In the case of rotor eccentricities, the number of pole-pairs and the connection of these pole-pairs greatly affect the airgap flux density distribution as well as the repartition of the line currents in the different pole-pairs.<p><p>These conclusions are obtained through the use of time-stepping finite element models of the faulty motors. Moreover, circuit models of faulty machines are built based on the conclusions of previously explained fault analysis and on classical Park models. A common mathematical description is used which allows objective comparison of the models for representation of the machine behaviour and computing time.<p><p>The identifiability of the parameters of the models as well as methods for their identification are studied. Focus is set on the representation of the machine behaviour using these parameters more than the precise identification of the parameters. It is shown that some classical parameters can not be uniquely identified using only stator measurements.<p><p>Fault detection and identification using computationally cheap models are compared to advanced detection through motor stator current spectral analysis. This last approach allows faster detection and identification of the fault but leads to incorrect conclusions in low load conditions, in transient situations or in perturbed environments (i.e. fluctuating load torque and unideal supply). Efficient quantification of the fault can be obtained using detection techniques based on the comparison of the process to a model.<p><p>Finally, the work provides guidelines for motor supervision strategies depending on the context of motor utilisation. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
103

Analýza možností zvýšení účinnosti asynchronních motorů / Analysis of possibilities to improvement induction motors efficiency

Novotný, Jiří January 2014 (has links)
In the first part of the master’s thesis dealing with the increasing efficiency of induction motors there are briefly presented basic information about induction motors, followed by an overview of the losses of induction motors. The next part deals with the ways to increase efficiency of induction motors without increasing tooling costs. The practical part consists of four measurements of four induction motors, with their various mechanical adjustments to make comparing benefits of these modifications possible. The measured results are compared by a finite element method in Maxwell 2D Design program, in which the same motors are simulated as measured. Theoretical knowledge about the increase of efficiency is practically applied while being implemented in the simulations.

Page generated in 0.0717 seconds