• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 251
  • 46
  • 23
  • 10
  • 9
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 707
  • 707
  • 408
  • 126
  • 109
  • 98
  • 95
  • 94
  • 93
  • 86
  • 85
  • 82
  • 79
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Activation and Inhibition of Multiple Inflammasome Pathways by the Yersinia Pestis Type Three Secretion System: A Dissertation

Ratner, Dmitry 11 May 2016 (has links)
Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is favored by a robust early innate immune response initiated by IL-1β and IL-18. Precursors of these cytokines are expressed downstream of TLR signaling and are then enzymatically processed into mature bioactive forms, typically by caspase-1 which is activated through a process dependent on multi-molecular structures called inflammasomes. Y. pestis evades immune detection in part by using a Type three secretion system (T3SS) to inject effector proteins (Yops) into host cells and suppress IL-1β and IL-18 production. We investigated the cooperation between two effectors, YopM and YopJ, in regulating inflammasome activation, and found that Y. pestis lacking both YopM and YopJ triggers robust caspase-1 activation and IL-1Β/IL-18 production in vitro. Furthermore, this strain is attenuated in a manner dependent upon caspase-1, IL-1β and IL-18 in vivo, yet neither effector appears essential for full virulence. We then demonstrate that YopM fails to inhibit NLRP3/NLRC4 mediated caspase-1 activation and is not a general caspase-1 inhibitor. Instead, YopM specifically prevents the activation of a Pyrin-dependent inflammasome by the Rho-GTPase inhibiting effector YopE. Mutations rendering Pyrin hyperactive are implicated in the autoinflammatory disease Familial Mediterranean Fever (FMF) in humans, and we discuss the potential significance of this disease in relation to plague. Altogether, the Y. pestis T3SS activates and inhibits several inflammasome pathways, and the fact that so many T3SS components are involved in manipulating IL-1β/IL-18 underscores the importance of these mechanisms in plague.
472

Utilizing Humanized Mice to Study Human Specific Innate Immune Responses in Immuno-Oncology

Aryee, Ken-Edwin 16 July 2019 (has links)
The kinetics of tumor growth and progression are governed by the interaction between tumor cells, the non-malignant stroma and both innate and adaptive immune cell lineages. Innate immunity has a critical role in the control of tumor cell growth and metastasis. The microenvironment of many tumors is populated with innate immune cells, including regulatory natural killer (NK) cells and dendritic cells (DCs), tumor associated macrophages, and myeloid derived suppressor cells, that suppress normal immune function. Much of our understanding of interactions between tumors and the innate immune system is based on experimental studies performed in mouse “syngenic” models. However, there is clear need for a mechanistic understanding of the human innate immune system within the tumor microenvironment. The goal of my thesis is to characterize the interactions between human innate immune cells and tumors and to define specific pathways and cell lineages that are targets for immune modulation. A central focus of my thesis is the use of cutting-edge humanized mouse models based on the immunodeficient NOD-scid IL2Rgnull (NSG) mouse strain to study human immuno-oncology. In the first section of my thesis I describe studies that evaluate the influence of inflammatory stimuli on innate immune control of tumors. Agents that induce inflammation have been used since the 18th century for the treatment of cancer. The inflammation induced by agents such as toll-like receptor (TLR) agonists is thought to stimulate tumor-specific immunity in patients and augment control of tumor burden. While NSG mice lack murine adaptive immunity (T and B cells), these mice maintain a residual murine innate immune system that responds to TLR agonists. Here I describe a novel NSG mouse strain lacking TLR4 that fails to respond to lipopolysaccharide (LPS). NSG-Tlr4null mice support human immune system engraftment and enables the study of human specific responses to TLR4 agonists. My data demonstrate that specific stimulation of TLR4 activates human innate immune system and promotes regression of human patient derived xenograft (PDX) tumors. In the second section of my thesis I describe the development of an NSG mouse strain that constitutively expresses human Interleukin 15 (IL15) and supports the development of functional human NK cells. Using humanized NSG-IL15 transgenic mice (NSG-Tg(Hu-IL15), my data clearly demonstrate a critical role for human NK cells in limiting growth of a PDX melanoma. In the third section of my thesis I describe, the use of the bone marrow/liver/thymus (BLT) humanized mouse model to study the interactions between the human immune system and PDX melanoma and to evaluate the response of the melanoma to immunotherapy modalities. My results collectively suggest that mice engrafted with human immune systems and bearing human tumors can be harnessed as translational models, which are critically needed as tools to study tumor immunotherapy. These humanized mouse models are an ideal translational tool to advance our understanding of human immuno-oncology and for development and testing of novel immune therapies for the treatment of malignancies.
473

The Role of Signal 3 Cytokine Timing in CD8 T Cell Activation: A Dissertation

Urban, Stina L. 16 July 2015 (has links)
During an acute virus infection, antigen-specific CD8 T cells undergo clonal expansion and differentiation into effector cells in order to control the infection. Efficient clonal expansion and differentiation of CD8 T cells are required to develop protective memory CD8 T cells. Antigen specific cells require 3 distinct signals for their activation: TCR engagement of peptide-MHC (signal 1), costimulation between B7 and CD28 (signal 2), and inflammatory cytokines including IL-12 or type 1 IFN (signal 3). CD8 T cells that encounter antigen and costimulation undergo programmed cell division, but these two signals alone are not sufficient for full effector cell differentiation and survival into memory. CD8 T cells need a third signal for efficient clonal expansion, differentiation into various effector populations, acquisition of cytolytic effector functions, and memory formation. The requirements for signal 3 cytokines in CD8 T cell activation have only been recently described; however, the timing of exposure to these signals has yet to be investigated. During the course of an immune response not all T cells will see antigen, costimulation, and inflammatory cytokines at the same time or in the same order. I sought to examine how the timing of signal 3 cytokines affected CD8 T cell activation. I questioned how the order of these signals effected CD8 T cell priming and subsequent activation, expansion and differentiation. In order to study the in vivo effects of out-of-sequence signaling on CD8 T cell activation, I utilized poly(I:C), a dsRNA analogue, which is known to induce a strong type 1 IFN response. Through the use of various congenic transgenic and polyclonal CD8 T cell populations, in conjunction with adoptive transfer models, specific T cells which had been exposed to poly(I:C) induced environments could be identified and tracked over time. I wanted to characterize how out-of-sequence signaling affected T cell activation immediately after cognate antigen stimulation (4-5hours), and after prolonged exposure to cognate antigen (days-weeks). Considering type 1 IFN can have both inhibitory and stimulatory effects on CD8 T cell proliferation, and when type 1 IFN provides signal 3 cytokine activity, it has positive effects on CD8 T cell expansion, I wanted to investigate the role of type 1 IFN as an out-of-sequence signal during CD8 T cell activation. We identified a transient defect in the phosphorylation of downstream STAT molecules after IFNβ signaling within poly(I:C) pretreated CD8 T cells. The inability of poly(I:C) pretreated CD8 T cells to respond to IFNβ signaling makes these cells behave in a manner more similar to T cells that only received 2 signals, rather than ones that received all 3 signals in the appropriate order. Consequently, poly(I:C) pretreated, or out-of-sequence, CD8 T cells were found to have defects in clonal expansion, effector differentiation and function as well as memory generation resulting in reduced efficacy of viral clearance. Out-of-sequence CD8 T cells showed suppression of CD8 T cell responses after prolonged exposure to cognate antigen, but naïve CD8 T cells pre-exposed to poly(I:C) exhibited immediate effector function within hours of cognate antigen stimulation, prior to cell division. Poly(I:C) pretreated naïve CD8 T cells acquired an early activated phenotype associated with alterations of transcription factors and surface markers. Changes in naïve CD8 T cell phenotype are thought to be mediated by poly(I:C)-induced upregulation of self-MHC and costimulatory molecules on APCs through direct type 1 IFN signaling. Inoculating with poly(I:C) enabled naive CD8 T cells to produce effector functions immediately upon stimulation with high density cognate antigen, reduced affinity altered peptide ligands (APLs), and in response to reduced concentrations of cognate antigen. Unlike conventional naïve CD8 T cells, poly(I:C) pretreated naïve CD8 T cells acquired the ability to specifically lyse target cells. These studies identified how the timing of activation signals can dramatically affect the acquisition of CD8 T cell effector function. This thesis describes how CD8 T cell exposure to activation signals in an unconventional order may result in altered response to antigen stimulation. Exposure of naïve CD8 T cells to type 1 IFN and costimulatory molecules in the presence of self-peptides enabled them to respond immediately upon antigen stimulation. Primed naïve CD8 T cells produced multiple cytokines in response to low-affinity, and low-density antigens, and gained ability to specifically lyse target cells. However, immediate effector function may come at the expense of clonal expansion and effector cell differentiation in response to prolonged antigen exposure as out-of-sequence CD8 T cells showed reduced proliferation, effector function and memory formation. The findings presented here may seem contradictory because out-of-sequence signaling can prime T cells to produce immediate effector functions and yet cause defects in T cell expansion and effector differentiation. However, these two models ascertained T cell function at different points after antigen exposure; one where functions were evaluated within hours after seeing cognate antigen, and the other showing T cell responses after days of antigen stimulation. Studies described in this thesis highlight the growing complexity of CD8 T cell activation. Not only do the presence or absence of signals 1-3 contribute to T cell activation, but the timing of these signals also proves to be of great importance. These studies may describe how both latecomer and third party antigen specific T cells behave when and if they encounter cognate antigen in the midst of an ongoing infection. Out-of-sequence exposure to IFN initially stimulates effector function but at the expense of efficient clonal expansion and subsequent memory formation. The immediate effector function that naïve T cells gain during out-of-sequence priming may explain how some individuals are more resistant to superinfections, whereas the impairment in proliferation describes a universal mechanism of virus-induced immune suppression, explaining how other individuals can be more susceptible to secondary infections. Ultimately, results identified here can be applied to developing better and more effective vaccines.
474

The Function of Innate γδ T Cell Subsets is Molecularly Programmed in the Thymus in Three Stages: A Dissertation

Narayan, Kavitha 11 March 2011 (has links)
The immune system generates discrete lineages of cells that are designed to respond optimally to environmental cues and infectious agents. Two distinct lineages of T cells, distinguished by expression of either an αβ or γδ T cell receptor (TCR), arise from a common progenitor in the thymus. The type of pathogen and the cytokine milieu directs effector differentiation of αβ T cells in the periphery through the induction of specific transcriptional networks. γδ T cell development is distinct from that of αβ T cells in its ordered rearrangement of TCR genes and the pairing of Vγ and Vδ chains to generate γδ T cell subsets that home to specific tissues. Unlike conventional αβ T cells, γδ T cells express a preactivated or memory phenotype prior to pathogen encounter, and recent evidence indicates that effector functions may be programmed during thymic development. To better understand the development and function of γδ T cells, we analyzed the gene expression profiles of subsets of γδ T cells segregated by TCR repertoire and maturation state in the thymus. We also determined the impact of TCR signaling and trans-conditioning on γδ T cell subset-specific gene signatures by analysis of Itk-/- and Tcrb-/- γδ T cell subsets. Our analysis has defined three stages of γδ T cell subset-specific differentiation, and indicates that γδ T cells may consist of at least two separate lineages, distinguished by the expression of a Vγ2 or Vγ1.1 TCR, that arise from different precursors during thymic development. Key transcriptional networks are established in immature γδ T cells during the first phase of development, independent of TCR signaling and trans-conditioning, with Vγ2+ cells expressing modulators of WNT signaling, and Vγ1.1+ cells expressing high levels of inhibitor of DNA binding 3 (ID3), which regulates E2A/HEB proteins. The second stage involves the further specification of the Vγ2+ subset specific gene signature, which is dependent upon ITK-mediated signals. In the third stage, terminal maturation of γδ T cell subsets occurs, dependent on both TCR and trans-conditioning signals. The expression patterns of Vγ1.1+ subsets that differ in Vδ usage diverge, and all subsets further elaborate and reinforce their effector programming by the distinct expression of chemokine and cytokine receptors. Alteration of WNT signaling or E2A/HEB activity results in subset specific defects in effector programming, indicating that the transcriptional networks established at the immature stage are crucial for the functional maturation of γδ T cells. These data provide a new picture of γδ T cell development, regulated by multiple checkpoints that shape the acquisition of subset-specific molecular signatures and effector functions.
475

The Role of Eukaryotic ABC-Transporters in Eliciting Neutrophil infiltration during Streptococcus pneumoniae infection

Zukauskas, Andrew 28 June 2018 (has links)
Streptococcus pneumoniae (S. pneumoniae) is a Gram-positive, encapsulated bacterium capable of causing significant morbidity and mortality throughout the world. A hallmark of S. pneumoniae infection is infiltration of neutrophils (PMNs) that assist in controlling the spread infection but may also contribute to pathology. Paradoxically, studies have shown that limiting PMN infiltration into the lumen of the lung during infection actually betters clinical outcome in experimental S. pneumoniae infection. The final step in PMN luminal trafficking is a Hepoxilin A3 (HXA3)-dependent migration across the pulmonary epithelium. HXA3 is a PMN chemoattractant that forms gradients along the polarized epithelial face, drawing PMNs from the basolateral to the apical surface during proinflammatory responses. HXA3 requires assistance of an integral- membrane protein transporter to escape the cell and form the gradient. The pulmonary HXA3 transporter is currently unidentified. In this work, we identify the pulmonary HXA3 transporter as the ATP-Binding Cassette Transporter (ABC transporter) Multi-drug Resistance Associated Protein 2 (ABCC2, MRP2). We demonstrate that MRP1 and MRP2 are divergent ABC- transporters that control transepithelial PMN migration through efflux of a distinct anti-inflammatory substance and the pro-inflammatory HXA3 in the context of Streptococcus pneumoniae infection. Enrichment of MRP2 on the plasma membrane requires detection of the bacterial virulence factors pneumolysin (PLY) and hydrogen peroxide. PLY and hydrogen peroxide not only coordinate MRP2 apical membrane enrichment but also influence HXA3-dependent PMN transepithelial migration. They influence migration through stimulation of epithelial intracellular calcium increases that are crucial for HXA3 production as well as MRP2 translocation to the plasma membrane. PLY and hydrogen peroxide are not sufficient in their signaling alone, however, and require at least one additional bacterial signal to induce HXA3/MRP2 proinflammatory activities.
476

HIV-1 and SIVmac Repression by Retinoic Acid in Monocyte Cell Lines and Macrophages, and HIV-1 Repression by Interleukin-16 in T Cell Lines: A Dissertation

Maciaszek, Joseph Walter 19 December 1997 (has links)
Human immunodeficiency virus type-1 (HIV-1) is the etiologic agent of acquired immune deficiency syndrome (AIDS). In most cases HIV-1 infection in humans, leads to AIDS, which is characterized by opportunistic infections leading to death. The role various infectable cell types play in the course of infection is unclear. However, it is becoming increasingly more evident that cells of the monocyte/macrophage lineage are very important at several stages of disease. They are involved in the transmission, establishment and dissemination of infection as well as the AIDS related complication of dementia and pulmonary dysfunction. The regulation of virus expression in monocyte/macrophages while maintaining normal cell function would be of great benefit. Retinoic acid (RA) is a bioactive metabolite of vitamin A, an essential nutrient, and acts as a transcriptional regulator of many genes. RA is also a potent modulator of myeloid cell differentiation and function; it is currently used clinically. Clinical data indicate that serum vitamin A levels are inversely correlated with various aspects of HIV-1 induced disease. Furthermore, work done by several groups has demonstrated that RA directly modulates HIV-1 replication in cells of the myeloid lineage. RA is capable of either stimulating or repressing HIV-1 replication depending on the cell type used. This dichotomy appears to depend upon the differentiation state of the cells. Changes in differentiation states are associated with the altered expression of many cellular proteins including transcriptional regulators. Experiments indicate that the TATA box of HIV-1 is required for full levels of gene expression. I hypothesized that RA was modulating replication at the level of LTR-directed gene expression, and that the differentiation state of the cell influences the RA modulation. This thesis demonstrates that the RA effect is at the level of gene expression mapping to a promoter proximal element for both HIV-1 and simian immunodeficiency virus (SIVmac.) The ability of RA to stimulate or repress expression depends upon the differentiation state of the cells. Using U937 promonocyte cells, I demonstrate that RA increases SIVmac and HIV-1 transcription. When THP-1 monocytes or primary macrophages are used, I demonstrate that RA induces repression of HIV-1 and SIVmac. This RA modulation of expression is associated with altered complexes binding to the promoter proximal regions of HIV-1 and SIVmac. There has been a great deal of interest in CD8+ T cell derived factors which modulate HIV-1 replication. Work done by Levy and colleagues over a decade ago demonstrated that factors secreted by CD8+ T cells could block HIV-1 replication. Others have shown that the β-chemokines, released by activated CD8+ T cells, can block the entry of HIV-1 into macrophages. Center and colleagues identified a lymphocyte chemoattractant factor as IL-16. IL-16 is released by activated CD8+ T cells and it's receptor is CD4. IL-16 induces the migration of CD4+ T lymphocytes, and has been shown to activate many signaling pathways in CD4+ T lymphocytes. Kurth et al. demonstrated that IL-16 blocked the replication of HIV-1 in CD8+ depleted PBMC. In these experiments, it was not determined whether IL-16 was blocking viral entry (preventing viral binding to CD4) or whether IL-16 had inhibitory effects on subsequent steps in the virus life cycle. While IL-16 and HIV-1 share CD4 as their receptor, IL-16 binding was mapped to a separate epitope on CD4 from the HIV-1 binding site. Therefore I began experiments to determine how IL-16 regulates HIV-1 expression in T cells. I hypothesized that the IL-16 signaling pathway is involved in repressing HIV-1 gene expression. Experiments presented here demonstrate that IL-16 represses LTR-directed gene expression in T cell lines in a CD4 dependent manner. The IL-16 mediated repression is dependent on a DNA binding site contained within the viral core enhancer region. The data are also consistent with IL-16 inducing a repressor which binds within or adjacent to the HIV-1 core enhancer region.
477

The Role of Heterologous Immunity in Mediating Natural Resistance to Infection in Human Subjects: A Dissertation

Watkin, Levi B. 13 March 2012 (has links)
Heterologous immunity is a mechanism by which immunological memory within an individual, developed in response to a previous infection, plays a role in the immune response to a subsequent unrelated infection. In murine studies, heterologous immunity facilitated by cross-reactive CD8 T-cell responses can mediate either beneficial (protective immunity) or detrimental effects (e.g. enhanced lung and adipose immunopathology and enhanced viral titers) (Selin et al., 1998; Chen et al., 2001; Welsh and Selin, 2002; Nie et al., 2010; Welsh et al., 2010). Protective heterologous immunity results in enhanced clearance of virus during a subsequent infection with an unrelated pathogen. Such is the case when mice are immunized with lymphocytic choriomeningitis virus (LCMV) and subsequently challenged with Pichinde virus (PV) or vaccinia virus (VACV) (Selin et al., 1998). However, heterologous immunity may also mediate enhanced immunopathology as mice immunized with influenza A virus (IAV) and challenged with LCMV show increased viral titers and enhanced lung immunopathology (Chen et al., 2003). The role heterologous immunity plays during infection is not limited to the murine system. In fact, there have now been several reports of enhanced immunopathology due to heterologous immunity during human infections, involving viruses such as IAV, Epstein-Barr Virus (EBV), hepatitis C virus (HCV), and dengue virus (DENV) (Mathew et al., 1998; Wedemeyer et al., 2001; Acierno et al., 2003; Nilges et al., 2003; Clute et al., 2005; Urbani et al., 2005). Interestingly, in all reported cases in humans, heterologous immunity mediated enhanced immunopathology. Upon infection with EBV the clinical presentation can range from asymptomatic to severe, occasionally fatal, acute infectious mononucleosis (AIM) (Crawford et al., 2006b; Luzuriaga and Sullivan, 2010) which is marked by a massive CD8 lymphocytosis. This lympho-proliferative effect in AIM was shown to be partially mediated by reactivation of cross-reactive IAV-M1 58-66 (IAV-GIL) specific CD8 memory T-cells in HLA-A2 patients reacting to the EBV-BMLF1 280 (EBV-GLC) epitope (Clute et al., 2005). Interestingly, EBV infects ~90% of individuals globally by the third decade of life, establishing a life-long infection (Henle et al., 1969). However, it is unknown why 5-10% of adults remain EBV-sero-negative (EBV-SN), despite the fact that the virus infects the vast majority of the population and is actively shed at high titers even during chronic infection (Hadinoto et al., 2009). Here, we show that EBV-SN HLA-A2+ adults possess cross-reactive IAV-GIL/EBV-GLC memory CD8 T-cells that show highly unique properties. These IAV-GIL cross-reactive memory CD8 T-cells preferentially expand and produce cytokines to EBV antigens at high functional avidity. Additionally, they are capable of lysing EBV-infected targets and show the potential to enter the mucosal epithelial tissue, where infection is thought to initiate, by CD103 expression. This protective capacity of these cross-reactive memory CD8 T-cells may be explained by a unique T-cell receptor (TCR) repertoire that differs by both organization and CDR3 usage from that in EBV-seropositive (EBV-SP) donors. The composition of the CD8 T-cell repertoire is a dynamic process that begins during the stochastic positive selection of the T-cell pool during development in the thymus. Thus, upon egress to the periphery a naïve T-cell pool, or repertoire, is formed that is variable even between genetically identical individuals. This T-cell repertoire is not static, as each new infection leaves its mark on the repertoire once again by stochastically selecting and expanding best-fit effectors and memory populations to battle each new infection while at the same time deleting older memory CD8 T-cells to make room for the new memory cells (Selin et al., 1999). These events induce an altered repertoire that is unique to each individual at each infection. It is this dynamic and variable organization of the T-cell repertoire that leads to private specificity even between genetically identical individuals upon infection with the same pathogens and thus a different fate (Kim et al., 2005; Cornberg et al., 2006a; Nie et al., 2010). It is this private specificity of the TCR repertoire that helps explain why individuals with the same epitope specific cross-reactive response, but composed of different cross-reactive T-cell clones, can either develop AIM or never become infected with EBV. Our results suggest that heterologous immunity may protect EBV-SN adults against the establishment of productive EBV infection, and potentially be the first demonstration of protective T-cell heterologous immunity between unrelated pathogens in humans. Our results also suggest that CD8 T-cell immunity can be sterilizing and that an individual’s TCR repertoire ultimately determines their fate during infection. To conclusively show that heterologous immunity is actively protecting EBV-SN adults from the establishment of a productive EBV infection, one would have to deliberately expose an individual to the virus. Clearly, this is not an acceptable risk, and it could endanger the health of an individual. A humanized mouse model could allow one to address this question. However, before we can even attempt to address the question of heterologous immunity mediating protection from EBV infection in humanized mice, we must first determine whether these mice can be infected with, and build an immune response to the two viruses we are studying, EBV and IAV. We show here that these mice can indeed be infected with and also mount an immune response to EBV. Additionally, these mice can also be infected with IAV. However, at this time the immune responses that are made to these viruses in our established humanized mouse model are not substantial enough to fully mimic a human immune response capable of testing our hypothesis of heterologous immunity mediating protection from EBV infection. Although the immune response in these mice to EBV and IAV infection is not suitable for the testing of our model the data are promising, as the humanized mouse model is constantly improving. Hopefully, with constant improvements being made there will be a model that will duplicate a human immune system in its entirety. This thesis will be divided into 5 major chapters. The first chapter will provide an introduction to both general T-cell biology and also to the role of heterologous immunity in viral infection. The second chapter will provide the details of the experimental procedures that were performed to test our hypothesis. The third chapter will describe the main scientific investigation of the role of heterologous immunity in providing natural resistance to infection in human subjects. This chapter will also consist of the data that will be compiled into a manuscript for publication in a peer-reviewed journal. The fourth chapter will consist of work performed pertaining to the establishment of a humanized mouse model of EBV and IAV infection. The establishment of this model is important for us to be able to show causation for protection from EBV infection mediated by heterologous immunity.
478

Inflammasomes and the Innate Immune Response Against Yersinia Pestis: A Dissertation

Vladimer, Gregory I. 10 January 2013 (has links)
Yersinia pestis, the causative agent of plague, is estimated to have claimed the lives of 30-50% of the European population in five years. Although it can now be controlled through antibiotics, there are still lurking dangers of outbreaks from biowarfare and bioterrorism; therefore, ongoing research to further our understanding of its strong virulence factors is necessary for development of new vaccines. Many Gram-negative bacteria, including Y. pseudotuberculosis, the evolutionary ancestor of Y. pestis, produce a hexa-acylated lipid A/LPS which can strongly trigger innate immune responses via activation of Toll-like receptor 4 (TLR4)-MD2. In contrast, Y. pestis grown at 37ºC generates a tetra-acylated lipid A/LPS that poorly induces TLR4-mediated immune activation. We have reported that expression of E. coli lpxL in Y. pestis, which lacks a homologue of this gene, forces the biosynthesis of a hexa-acylated LPS, and that this single modification dramatically reduces virulence in wild type mice, but not in mice lacking a functional TLR4. This emphasizes that avoiding activation of innate immunity is important for Y. pestis virulence. It also provides a model in which survival is strongly dependent on innate immune defenses, presenting a unique opportunity for evaluating the relative importance of innate immunity in protection against bacterial infection. TLR signaling is critical for the sensing of pathogens, and one implication of TLR4 engagement is the induction of the pro-forms of the potent inflammatory cytokines IL-1β and IL-18. Therefore Y. pestis is able to suppress production of these which are generated through caspase-1-activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. For my thesis, I sought to elucidate the role of NLRs and IL-18/IL-1β during bubonic and pneumonic plague infection. Mice lacking IL-18 signaling led to increased susceptibility to wild type Y. pestis, and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. I found that the NLRP12, NLRP3 and NLRC4 inflammasomes were important protein complexes in maturing IL-18 and IL-1β during Y. pestis infection, and mice deficient in each of these NLRs were more susceptible to bacterial challenge. NLRC4 and NLRP12 also directed interferongamma production via induction of IL-18 against plague, and minimizing inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis. This is also the first study that elucidated a pro-inflammatory role for NLRP12 during bacterial infection.
479

The Role of Heterologous Immunity in Viral Co-Infections and Neonatal Immunity: A Dissertation

Kenney, Laurie L. 01 August 2013 (has links)
The dynamics of T cell responses have been extensively studied during single virus infection of naïve mice. During a viral infection, viral antigen is presented in the context of MHC class I molecules on the surface of infected cells. Activated CD8 T cells that recognized viral antigens mediate clearance of virus through lysis of these infected cells. We hypothesize that the balance between the replicating speed of the virus and the efficiency at which the T cell response clears the virus is key in determining the disease outcome of the host. Lower T cell efficiency and delayed viral clearance can lead to extensive T cellmediated immunopathology and death in some circumstances. To examine how the efficiency of the immune response would impact immunopathology we studied several viral infection models where T cell responses were predicted to be less than optimal: 1. a model of co-infection with two viruses that contain a crossreactive epitope, 2. a viral infection model where a high dose infection is known to induce clonal exhaustion of the CD8 T cell response, 3. a neonatal virus infection model where the immune system is immature and 4. A model of beneficial heterologous immunity and T cell crossreactivity where mice are immunized as neonates when the T cell pool is still developing. Model 1. Simultaneous co-infections are common and can occur from mosquito bites, contaminated needle sticks, combination vaccines and the simultaneous administration of multiple vaccines. Using two distantly related arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Pichinde virus (PICV), we questioned if immunological T cell memory and subsequent protection would be altered following a simultaneous co-infection, where two immune responses are generated within the same host at the same time. Coinfection with these two viruses, which require CD8 T cell responses to clear, resulted in decreased immune protection and enhanced immunopathology after challenge with either virus. After primary co-infection, each virus-specific immune response impacted the other as they competed within the same host and resulted in several significant differences in the CD8 T cell responses compared to mice infected with a single virus. Co-infected mice had a dramatic decrease in the overall size of the LCMV-specific CD8 T cell response and variability in which virus-specific response dominated, along with skewing in the immunodominance hierarchies from the normal responses found in single virus infected mice. The reduction in the number of LCMV-specific CD8 memory T cells, specifically cells with an effector memory-like phenotype, was associated with higher viral loads and increased liver pathology in co-infected mice upon LCMV challenge. The variability in the immunodominance hierarchies of co-infected mice resulted in an enhanced cross-reactive response in some mice that mediated enhanced immune-mediated fat pad pathology during PICV challenge. In both viral challenge models, an ineffective memory T cell response in co-infected mice facilitated increased viral replication, possibly leading to enhanced and prolonged accumulation of secondary effector T cells in the tissues, thereby leading to increased immune pathology. Thus, the magnitude and character of memory CD8 T cell responses in simultaneous co-infections differed substantially from those induced by single immunization. This has implications for the design of combination vaccines and scheduling of simultaneous immunizations. Model 2. The balance between protective immunity and immunopathology often determines the fate of the virus-infected host. Several human viruses have been shown to induce a wide range of severity of disease. Patients with hepatitis B virus (HBV), for example, show disease progression ranging from acute resolving infection to a persistent infection and fulminant hepatitis. Certain rapidly replicating viruses have the ability to clonally exhaust the T cell response, such as HBV and hepatitis C virus (HCV) in humans and the clone 13 strain of LCMV in mice. How rapidly virus is cleared is a function of initial viral load, viral replication rate, and efficiency of antigen-specific T cells. By infecting mice with three different inocula of LCMV clone 13, we questioned how the race between virus replication and T cell responses could result in different disease outcomes. A low dose of LCMV generated efficient CD8 T effector cells, which cleared the virus with minimal lung and liver pathology. A high dose of LCMV resulted in clonal exhaustion of T cell responses, viral persistence and little immunopathology. An intermediate dose only partially exhausted the CD8 T cell responses and was associated with significant mortality, and the surviving mice developed viral persistence and massive immunopathology, including necrosis of the lungs and liver. This was a T cell-mediated disease as T cell-deficient mice had no pathology and became persistently infected like mice infected with a high dose of LCMV clone 13. This suggests that for non-cytopathic viruses like LCMV, HCV and HBV, clonal exhaustion may be a protective mechanism preventing severe immunopathology and death. Model 3. Newborns are more susceptible to infections due to their lack of immunological memory and under-developed immune systems. Passive maternal immunity helps protect neonates until their immune systems have matured. We questioned if a noncytolytic virus that produces strong T cell responses in adult mice would also induce an equally effective response in neonatal mice. Neonates were infected with very low doses of LCMV Armstrong and surprisingly the majority succumbed to infection between days 7-11, which is the peak of the T cell response in adult mice infected with LCMV. Death was caused by T cell-dependent pathology and not viral load as 100% of T cell deficient neonates survived with minimal lung and liver pathology. This is similar to the adult model of medium dose LCMV clone 13, but T cell responses in neonates were not partially clonal exhausted. Furthermore, surviving neonates were not persistently infected, clearing virus by day 14 post infection. In adult mice direct intracranial infection leads to LCMV replication and CD8 T cell infiltration in the central nervous system (CNS), causing CD8 T cell-mediated death. However, this does not occur in adults during LCMV intraperitoneal (ip) infections. We questioned if unlike adults LCMV could be gaining access to the CNS in neonates following ip infection. Replicating LCMV was found in the brain of neonates after day 5 post infection along with virus-specific CD8 T cells producing IFNγ at day 9 post infection. Neonates lacking perforin had complete survival when followed until day 14 post infection, suggesting perforin-mediated T cell-dependent immunopathology within the CNS of neonates was causing death after LCMV infection. Passive immunity from LCMV-immune mothers also protected 100% of pups from death by helping control viral load early in infection. We believe that the maternal antibody compensates for the immature innate immune response of neonates and controls viral replication early so the neonatal T cell response induced less immunopathology. Neonates are commonly thought to have less functional immune systems, but these results show that neonates are capable of producing strong T cell responses that contribute to increased mortality. Model 4. Due to their enhanced susceptibility to infection neonatal and infant humans receive multiple vaccines. Several non-specific effects from immunizations have been observed, for example, measles or Bacillus Calmette- Guerin (BCG) vaccines have been linked to decreased death of children from infections other than measles virus or tuberculosis. These studies mirror the concepts of beneficial heterologous immunity, where previous immunization with an unrelated pathogen can result in faster viral clearance. LCMV-immune mice challenged with vaccinia virus (VV) have lower viral loads then naïve mice and survive lethal infections, but some mice do develop fat pad immunopathology in the form of panniculitis or acute fatty necrosis (AFN). We questioned how immunological T cell memory formed during the immature neonatal period would compare to memory generated in fully mature adults during a heterologous viral challenge. Mice immunized as neonates had comparable reduction in VV load and induction of AFN, indicating that heterologous immunity is established during viral infections early in life. Interestingly, the LCMV-specific memory populations that expanded in mice immunized as neonates differed from that of mice immunized as adults. In adult mice 50% of the mice have an expansion of LCMVNP205- specific CD8 T cells while the majority of neonates expanded the LCMVGP34- specific CD8 T cell pool. This alteration in dominant crossreactivities may be due to the limited T cell receptor repertoire of neonatal mice. In naïve neonatal mice we found altered Vβ repertoires within the whole CD8 T cell pool. Furthermore, there was altered Vβ usage within virus-specific responses compared to adult mice and a wide degree of variability between individual neonates, suggesting enhanced private specificity of the TCR repertoire. Beneficial heterologous immunity is maintained in neonates, but there was altered usage of crossreactive responses. As neonatal mice were found to be so sensitive to LCMV infection we questioned if neonates could control another arena virus that did not replicate as efficiently in mice, PICV. Unlike LCMV infection, neonatal mice survived infection with PICV even with adult-like doses. However, viral clearance was protracted in neonates compared to adults, but was cleared from fat pad and kidney by day 11 post infection. The peak of the CD8 T cell response was similarly delayed. PICV infected neonates showed dose-dependent PICV-specific CD8 T cell responses, which were similar to adult responses by frequency, but not total number. As with LCMV infection there were changes in immunodominance hierarchies in neonates. Examination of the immunodominance hierarchies of PICV-infected neonates showed that there were adult-like responses to the dominant NP38- specific response, but a loss of the NP122-specific response. Six weeks post neonatal infection mice were challenged with LCMV Armstrong and there was a strong skewing of the PICV immunodominance hierarchy to the crossreactive NP205-specific response. These data further support the hypothesis that heterologous immunity and crossreactivity develop following neonatal immunization, much as occurs in adults, although TCR repertoire and crossreactive patterns may differ. Changing the balance between T cell efficiency and viral load was found to altered the severity of the developing immunopathology after viral infection.
480

Natural Polymorphism of Mycobacterium tuberculosis and CD8 T Cell Immunity

Sutiwisesak, Rujapak 24 February 2020 (has links)
Coevolution between Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, and the human host has been documented for thousands of years. Interestingly, while T cell immunity is crucial for host protection and survival, T cell antigens are the most conserved region of the Mtb genome. Hypothetically, Mtb adapts under immune pressure to exploit T cell responses for its benefit from inflammation and tissue destruction for ultimately transmission. EsxH, a gene encoding immunodominant TB10.4 protein, however, contains polymorphic regions corresponding to T cell epitopes. Here, I present two complementary analyses to examine how Mtb modulates TB10.4 for immune evasion. First, I use a naturally occurring esxH polymorphic clinical Mtb isolate, 667, to investigate how A10T amino acid exchange in TB10.4 affect T cell immunity. To verify and identify the cause of the immunological differences, I construct isogenic strains expressing EsxHA10T or EsxHWT. In combination with our recent finding that TB10.44-11-specific CD8 T cells do not recognize Mtb-infected macrophages, we hypothesize that TB10.4 is a decoy antigen as it distracts host immunity from inducing other potentially protective responses. I examine whether an elimination of TB10.44-11-specific CD8 T cell response leads to a better host protective immunity. The studies of in vivo infection and in vitro recognition in this dissertation aim to provide a better understanding of the counteraction between immune evasion and protective immunity.

Page generated in 0.5076 seconds