Spelling suggestions: "subject:"information dde kullback"" "subject:"information dde pullback""
1 |
Sélection de modèles semi-paramétriquesLiquet, benoit 11 December 2002 (has links) (PDF)
Cette thèse développe des méthodes de sélection de modèles pour des applications en Biostatistique et plus particulièrement dans le domaine médical. Dans la première partie, nous proposons une méthode et un programme de correction du niveau de signification d'un test lorsque plusieurs codages d'une variable explicative sont essayés. Ce travail est réalisé dans le cadre d'une régression logistique et appliqué à des données sur la relation entre cholestérol et démence. La deuxième partie de la thèse est consacrée au développement d'un critère d'information général permettant de sélectionner un estimateur parmi une famille d'estimateurs semi-paramétriques. Le critère que nous proposons est basé sur l'estimation par bootstrap de l'information de Kullback-Leibler. Nous appliquons ensuite ce critère à la modélisation de l'effet de l'amiante sur le risque de mésothéliome et nous comparons cette approche à la méthode de sélection de Birgé-Massart. Enfin, la troisième partie présente un critère de sélection en présence des données incomplètes. Le critère proposé est une extension du critère developpé dans la deuxième partie. Ce critère, construit sur l'espérance de la log-vraisemblance observée, permet en particulier de sélectionner le paramètre de lissage dans l'estimation lisse de la fonction de risque et de choisir entre des modèles stratifiés et des modèles à risques proportionnels. Nous avons notamment appliqué cette méthode à la modélisation de l'effet du sexe et du niveau d'éducation sur le risque de démence.
|
2 |
Estimation, validation et identification des modèles ARMA faibles multivariésBoubacar Mainassara, Yacouba 28 November 2009 (has links) (PDF)
Dans cette thèse nous élargissons le champ d'application des modèles ARMA (AutoRegressive Moving-Average) vectoriels en considérant des termes d'erreur non corrélés mais qui peuvent contenir des dépendances non linéaires. Ces modèles sont appelés des ARMA faibles vectoriels et permettent de traiter des processus qui peuvent avoir des dynamiques non linéaires très générales. Par opposition, nous appelons ARMA forts les modèles utilisés habituellement dans la littérature dans lesquels le terme d'erreur est supposé être un bruit iid. Les modèles ARMA faibles étant en particulier denses dans l'ensemble des processus stationnaires réguliers, ils sont bien plus généraux que les modèles ARMA forts. Le problème qui nous préoccupera sera l'analyse statistique des modèles ARMA faibles vectoriels. Plus précisément, nous étudions les problèmes d'estimation et de validation. Dans un premier temps, nous étudions les propriétés asymptotiques de l'estimateur du quasi-maximum de vraisemblance et de l'estimateur des moindres carrés. La matrice de variance asymptotique de ces estimateurs est d'une forme "sandwich", et peut être très différente de la variance asymptotique obtenue dans le cas fort. Ensuite, nous accordons une attention particulière aux problèmes de validation. Dans un premier temps, en proposant des versions modifiées des tests de Wald, du multiplicateur de Lagrange et du rapport de vraisemblance pour tester des restrictions linéaires sur les paramètres de modèles ARMA faibles vectoriels. En second, nous nous intéressons aux tests fondés sur les résidus, qui ont pour objet de vérifier que les résidus des modèles estimés sont bien des estimations de bruits blancs. Plus particulièrement, nous nous intéressons aux tests portmanteau, aussi appelés tests d'autocorrélation. Nous montrons que la distribution asymptotique des autocorrelations résiduelles est normalement distribuée avec une matrice de covariance différente du cas fort (c'est-à-dire sous les hypothèses iid sur le bruit). Nous en déduisons le comportement asymptotique des statistiques portmanteau. Dans le cadre standard d'un ARMA fort, il est connu que la distribution asymptotique des tests portmanteau est correctement approximée par un chi-deux. Dans le cas général, nous montrons que cette distribution asymptotique est celle d'une somme pondérée de chi-deux. Cette distribution peut être très différente de l'approximation chi-deux usuelle du cas fort. Nous proposons donc des tests portmanteau modifiés pour tester l'adéquation de modèles ARMA faibles vectoriels. Enfin, nous nous sommes intéressés aux choix des modèles ARMA faibles vectoriels fondé sur la minimisation d'un critère d'information, notamment celui introduit par Akaike (AIC). Avec ce critère, on tente de donner une approximation de la distance (souvent appelée information de Kullback-Leibler) entre la vraie loi des observations (inconnue) et la loi du modèle estimé. Nous verrons que le critère corrigé (AICc) dans le cadre des modèles ARMA faibles vectoriels peut, là aussi, être très différent du cas fort.
|
3 |
Sur diverses extensions des chaînes de Markov cachées avec application au traitement des signaux radarLapuyade-Lahorgue, Jérôme 10 December 2008 (has links) (PDF)
L'objectif de cette thèse est de proposer différents modèles généralisant le modèle classique des chaînes de Markov cachées à bruit indépendant couramment utilisé en inférence bayésienne de signaux. Les diverses extensions de ce modèle visent à l'enrichir et à prendre en compte différentes propriétés du signal, comme le caractère non gaussien du bruit, ou la nature semi-markovienne du signal caché. Dans un problème d'inférence bayésienne, nous disposons de deux processus aléatoires X et Y , on observe la réalisation y de Y et nous estimons la réalisation cachée x de X. Le lien existant entre les deux processus est modélisé par la distribution de probabilité p(x, y). Dans le modèle classique des chaînes de Markov cachées à bruit indépendant, la distribution p(x) est celle d'une chaîne de Markov et la distribution p(y|x) est celle de marginales indépendantes conditionnellement à x. Bien que ce modèle puisse être utilisé dans de nombreuses applications, il ne parvient pas à modéliser toutes les situations de dépendance. Le premier modèle que nous proposons est de type “chaînes de Markov triplet”, on considère ainsi un troisième processus U tel que le triplet (X, U, Y ) soit une chaîne de Markov. Dans le modèle proposé, ce processus auxiliaire modélise la semi-markovianité de X ; on parvient ainsi à prendre en compte la non markovianité éventuelle du processus caché. Dans un deuxième modèle, nous considérons des observations à dépendance longue et nous proposons un algorithme d'estimation original des paramètres de ce modèle. Nous étudions par ailleurs différents modèles prenant en compte simultanément la semi-markovianité des données cachées, la dépendance longue dans les observations ou la non stationnarité des données cachées. Enfin, la nature non nécessairement gaussienne du bruit est prise en compte via l'introduction des copules. L'intérêt des différents modèles proposés est également validé au travers d'expérimentations. Dans la dernière partie de cette thèse, nous étudions également comment la segmentation obtenue par une méthode bayésienne peut être utilisée dans la détection de cibles dans le signal radar. Le détecteur original que nous implémentons utilise la différence de statistiques entre un signal recu et les signaux recus de son voisinage. Le détecteur ainsi implémenté s'avère donner de meilleurs résultats en présence de fort bruit que le détecteur habituellement utilisé en traitement radar.
|
Page generated in 0.1135 seconds