• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 15
  • 4
  • 1
  • Tagged with
  • 69
  • 25
  • 25
  • 24
  • 20
  • 17
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Advances in multi-user scheduling and turbo equalization for wireless MIMO systems

Fuchs-Lautensack, Martin January 2009 (has links)
Zugl.: Ilmenau, Techn. Univ., Diss., 2009
42

Efficient receiver methods for coded systems under channel uncertainty

Fonseca dos Santos, André January 2010 (has links)
Zugl.: Dresden, Techn. Univ., Diss., 2010
43

Blind source separation algorithms for the analysis of optical imaging experiments

Schießl, Ingo. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2001--Berlin.
44

Working with real world datasets preprocessing and prediction with large incomplete and heterogeneous datasets /

Schöner, Holger. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Berlin.
45

Computability and fractal dimension

Reimann, Jan. Unknown Date (has links) (PDF)
University, Diss., 2004--Heidelberg.
46

Subgraph Covers- An Information Theoretic Approach to Motif Analysis in Networks

Wegner, Anatol Eugen 16 February 2015 (has links) (PDF)
A large number of complex systems can be modelled as networks of interacting units. From a mathematical point of view the topology of such systems can be represented as graphs of which the nodes represent individual elements of the system and the edges interactions or relations between them. In recent years networks have become a principal tool for analyzing complex systems in many different fields. This thesis introduces an information theoretic approach for finding characteristic connectivity patterns of networks, also called network motifs. Network motifs are sometimes also referred to as basic building blocks of complex networks. Many real world networks contain a statistically surprising number of certain subgraph patterns called network motifs. In biological and technological networks motifs are thought to contribute to the overall function of the network by performing modular tasks such as information processing. Therefore, methods for identifying network motifs are of great scientific interest. In the prevalent approach to motif analysis network motifs are defined to be subgraphs that occur significantly more often in a network when compared to a null model that preserves certain features of the network. However, defining appropriate null models and sampling these has proven to be challenging. This thesis introduces an alternative approach to motif analysis which looks at motifs as regularities of a network that can be exploited to obtain a more efficient representation of the network. The approach is based on finding a subgraph cover that represents the network using minimal total information. Here, a subgraph cover is a set of subgraphs such that every edge of the graph is contained in at least one subgraph in the cover while the total information of a subgraph cover is the information required to specify the connectivity patterns occurring in the cover together with their position in the graph. The thesis also studies the connection between motif analysis and random graph models for networks. Developing random graph models that incorporate high densities of triangles and other motifs has long been a goal of network research. In recent years, two such model have been proposed . However, their applications have remained limited because of the lack of a method for fitting such models to networks. In this thesis, we address this problem by showing that these models can be formulated as ensembles of subgraph covers and that the total information optimal subgraph covers can be used to match networks with such models. Moreover, these models can be solved analytically for many of their properties allowing for more accurate modelling of networks in general. Finally, the thesis also analyzes the problem of finding a total information optimal subgraph cover with respect to its computational complexity. The problem turns out to be NP-hard hence, we propose a greedy heuristic for it. Empirical results for several real world networks from different fields are presented. In order to test the presented algorithm we also consider some synthetic networks with predetermined motif structure.
47

New insights into conjugate duality

Grad, Sorin - Mihai 19 July 2006 (has links) (PDF)
With this thesis we bring some new results and improve some existing ones in conjugate duality and some of the areas it is applied in. First we recall the way Lagrange, Fenchel and Fenchel - Lagrange dual problems to a given primal optimization problem can be obtained via perturbations and we present some connections between them. For the Fenchel - Lagrange dual problem we prove strong duality under more general conditions than known so far, while for the Fenchel duality we show that the convexity assumptions on the functions involved can be weakened without altering the conclusion. In order to prove the latter we prove also that some formulae concerning conjugate functions given so far only for convex functions hold also for almost convex, respectively nearly convex functions. After proving that the generalized geometric dual problem can be obtained via perturbations, we show that the geometric duality is a special case of the Fenchel - Lagrange duality and the strong duality can be obtained under weaker conditions than stated in the existing literature. For various problems treated in the literature via geometric duality we show that Fenchel - Lagrange duality is easier to apply, bringing moreover strong duality and optimality conditions under weaker assumptions. The results presented so far are applied also in convex composite optimization and entropy optimization. For the composed convex cone - constrained optimization problem we give strong duality and the related optimality conditions, then we apply these when showing that the formula of the conjugate of the precomposition with a proper convex K - increasing function of a K - convex function on some n - dimensional non - empty convex set X, where K is a k - dimensional non - empty closed convex cone, holds under weaker conditions than known so far. Another field were we apply these results is vector optimization, where we provide a general duality framework based on a more general scalarization that includes as special cases and improves some previous results in the literature. Concerning entropy optimization, we treat first via duality a problem having an entropy - like objective function, from which arise as special cases some problems found in the literature on entropy optimization. Finally, an application of entropy optimization into text classification is presented.
48

Dynamical characterization of Markov processes with varying order

Bauer, Michael 26 January 2009 (has links) (PDF)
Time-delayed actions appear as an essential component of numerous systems especially in evolution processes, natural phenomena, and particular technical applications and are associated with the existence of a memory. Under common conditions, external forces or state dependent parameters modify the length of the delay with time. Consequently, an altered dynamical behavior emerges, whose characterization is compulsory for a deeper understanding of these processes. In this thesis, the well-investigated class of time-homogeneous finite-state Markov processes is utilized to establish a variation of memory length by combining a first-order Markov chain with a memoryless Markov chain of order zero. The fluctuations induce a non-stationary process, which is accomplished for two special cases: a periodic and a random selection of the available Markov chains. For both cases, the Kolmogorov-Sinai entropy as a characteristic property is deduced analytically and compared to numerical approximations to the entropy rate of related symbolic dynamics. The convergences of per-symbol and conditional entropies are examined in order to recognize their behavior when identifying unknown processes. Additionally, the connection from Markov processes with varying memory length to hidden Markov models is illustrated enabling further analysis. Hence, the Kolmogorov-Sinai entropy of hidden Markov chains is calculated by means of Blackwell’s entropy rate involving Blackwell’s measure. These results are used to verify the previous computations.
49

Kybernetik in der DDR

Segal, Jérôme 17 April 2014 (has links) (PDF)
No description available.
50

Uncertainty Assessment of Hydrogeological Models Based on Information Theory / Bewertung der Unsicherheit hydrogeologischer Modelle unter Verwendung informationstheoretischer Grundlagen

De Aguinaga, José Guillermo 17 August 2011 (has links) (PDF)
There is a great deal of uncertainty in hydrogeological modeling. Overparametrized models increase uncertainty since the information of the observations is distributed through all of the parameters. The present study proposes a new option to reduce this uncertainty. A way to achieve this goal is to select a model which provides good performance with as few calibrated parameters as possible (parsimonious model) and to calibrate it using many sources of information. Akaike’s Information Criterion (AIC), proposed by Hirotugu Akaike in 1973, is a statistic-probabilistic criterion based on the Information Theory, which allows us to select a parsimonious model. AIC formulates the problem of parsimonious model selection as an optimization problem across a set of proposed conceptual models. The AIC assessment is relatively new in groundwater modeling and it presents a challenge to apply it with different sources of observations. In this dissertation, important findings in the application of AIC in hydrogeological modeling using different sources of observations are discussed. AIC is tested on ground-water models using three sets of synthetic data: hydraulic pressure, horizontal hydraulic conductivity, and tracer concentration. In the present study, the impact of the following factors is analyzed: number of observations, types of observations and order of calibrated parameters. These analyses reveal not only that the number of observations determine how complex a model can be but also that its diversity allows for further complexity in the parsimonious model. However, a truly parsimonious model was only achieved when the order of calibrated parameters was properly considered. This means that parameters which provide bigger improvements in model fit should be considered first. The approach to obtain a parsimonious model applying AIC with different types of information was successfully applied to an unbiased lysimeter model using two different types of real data: evapotranspiration and seepage water. With this additional independent model assessment it was possible to underpin the general validity of this AIC approach. / Hydrogeologische Modellierung ist von erheblicher Unsicherheit geprägt. Überparametrisierte Modelle erhöhen die Unsicherheit, da gemessene Informationen auf alle Parameter verteilt sind. Die vorliegende Arbeit schlägt einen neuen Ansatz vor, um diese Unsicherheit zu reduzieren. Eine Möglichkeit, um dieses Ziel zu erreichen, besteht darin, ein Modell auszuwählen, das ein gutes Ergebnis mit möglichst wenigen Parametern liefert („parsimonious model“), und es zu kalibrieren, indem viele Informationsquellen genutzt werden. Das 1973 von Hirotugu Akaike vorgeschlagene Informationskriterium, bekannt als Akaike-Informationskriterium (engl. Akaike’s Information Criterion; AIC), ist ein statistisches Wahrscheinlichkeitskriterium basierend auf der Informationstheorie, welches die Auswahl eines Modells mit möglichst wenigen Parametern erlaubt. AIC formuliert das Problem der Entscheidung für ein gering parametrisiertes Modell als ein modellübergreifendes Optimierungsproblem. Die Anwendung von AIC in der Grundwassermodellierung ist relativ neu und stellt eine Herausforderung in der Anwendung verschiedener Messquellen dar. In der vorliegenden Dissertation werden maßgebliche Forschungsergebnisse in der Anwendung des AIC in hydrogeologischer Modellierung unter Anwendung unterschiedlicher Messquellen diskutiert. AIC wird an Grundwassermodellen getestet, bei denen drei synthetische Datensätze angewendet werden: Wasserstand, horizontale hydraulische Leitfähigkeit und Tracer-Konzentration. Die vorliegende Arbeit analysiert den Einfluss folgender Faktoren: Anzahl der Messungen, Arten der Messungen und Reihenfolge der kalibrierten Parameter. Diese Analysen machen nicht nur deutlich, dass die Anzahl der gemessenen Parameter die Komplexität eines Modells bestimmt, sondern auch, dass seine Diversität weitere Komplexität für gering parametrisierte Modelle erlaubt. Allerdings konnte ein solches Modell nur erreicht werden, wenn eine bestimmte Reihenfolge der kalibrierten Parameter berücksichtigt wurde. Folglich sollten zuerst jene Parameter in Betracht gezogen werden, die deutliche Verbesserungen in der Modellanpassung liefern. Der Ansatz, ein gering parametrisiertes Modell durch die Anwendung des AIC mit unterschiedlichen Informationsarten zu erhalten, wurde erfolgreich auf einen Lysimeterstandort übertragen. Dabei wurden zwei unterschiedliche reale Messwertarten genutzt: Evapotranspiration und Sickerwasser. Mit Hilfe dieser weiteren, unabhängigen Modellbewertung konnte die Gültigkeit dieses AIC-Ansatzes gezeigt werden.

Page generated in 0.0898 seconds