1 |
STUDIES ON THE FABRICATION OF VERTICAL INTEGRATED MEMS DEVICES / 縦方向に集積化されたMEMSデバイス作製の研究Oba, Masatoshi 24 September 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・論文博士 / 博士(工学) / 乙第12493号 / 論工博第4047号 / 新制||工||1503(附属図書館) / 28243 / (主査)教授 平尾 一之, 教授 横尾 俊信, 教授 田中 勝久 / 学位規則第4条第2項該当
|
2 |
Calibration of Multispectral SensorsIsoz, Wilhelm January 2005 (has links)
<p>This thesis describes and evaluates a number of approaches and algorithms for nonuniform correction (NUC) and suppression of fixed pattern noise in a image sequence. The main task for this thesis work was to create a general NUC for infrared focal plane arrays. To create a radiometrically correct NUC, reference based methods using polynomial approximation are used instead of the more common scene based methods which creates a cosmetic NUC.</p><p>The pixels that can not be adjusted to give a correct value for the incomming radiation are defined as dead. Four separate methods of identifying dead pixels are used to find these pixels. Both the scene sequence and calibration data are used in these identifying methods.</p><p>The algorithms and methods have all been tested by using real image sequences. A graphical user interface using the presented algorithms has been created in Matlab to simplify the correction of image sequences. An implementation to convert the corrected values from the images to radiance and temperature is also performed.</p>
|
3 |
Traffic State Estimation Integrating Bluetooth Adapter and Passive Infrared SensorGe, Yongfeng Unknown Date
No description available.
|
4 |
Automatizované měření infračervených čidel pro sanitární techniku / Automated measurements of infrared sensors for sanitary equipmentAmbrož, Jaromír January 2015 (has links)
This thessis deals with the realization options of automatic measuring device for infrared sensors used in sanitary electronic. The device is designed to work automatically and save all measured data to ERP system.
|
5 |
Comparison Of Casimir , Elastic, Electrostatic Forces For A Micro-CantileverAlhasan, Ammar 01 January 2014 (has links)
Casimir force is a cause of stiction (adhesion) between metal surfaces in Micro-Electro Mechanical Systems (MEMS). Casimir Force depends strongly on the separation of the two surfaces and the contact area. This thesis reviews the theory and prior experimental demonstrations of the Casimir force. Then the Casimir attractive force is calculated for a particular MEMS cantilever device, in which the metal cantilever tip is required to repeatedly touch and release from a metal tip pad on the substrate surface in response to a periodic driving electrostatic force. The elastic force due to the bending of the cantilever support arms is also a consideration in the device operation. The three forces are calculated analytically and compared as a function of cantilever tip height. Calculation of the electrostatic force uses coefficients of capacitance and electrostatic induction determined numerically by the finite element method, including the effect of permittivity for the structural oxide. A condition on the tip area to allow electrostatic release of the tip from the surface against Casimir sticking and elastic restoring forces is established.
|
6 |
Radar and Thermopile Sensor Fusion for Pedestrian DetectionRouhani, Shahin January 2005 (has links)
During the last decades, great steps have been taken to decrease passenger fatality in cars. Systems such as ABS and airbags have been developed for this purpose alone. But not much effort has been put into pedestrian safety. In traffic today, pedestrians are one of the most endangered participants and in recent years, there has been an increased demand for pedestrian safety from the European Enhanced Vehicle safety Committee and the European New Car Assessment Programme has thereby developed tests where pedestrian safety is rated. With this, detection of pedestrians has arised as a part in the automotive safety research. This thesis provides some of this research available in the area and a brief introduction to some of the sensors readily available. The objective of this work is to detect pedestrians in front of a vehicle by using thermoelectric infrared sensors fused with short range radar sensors and also to minimize any missed detections or false alarms. There has already been extensive work performed with the thermoelectric infrared sensors for this sole purpose and this thesis is based on that work. Information is provided about the sensors used and an explanation of how they are set up during this work. Methods used for classifying objects are given and the assumptions made about pedestrians in this system. A basic tracking algorithm is used to track radar detected objects in order to provide the fusion system with better data. The approach chosen for the sensor fusion is a central-level fusion where the probabilities for a pedestrian from the radars and the thermoelectric infrared sensors are combined using Dempster-Shafer Theory and accumulated over time in the Occupancy Grid framework. Theories that are extensively used in this thesis are explained in detail and discussed accordingly in different chapters. Finally the experiments undertaken and the results attained from the presented system are shown. A comparison is made with the previous detection system, which only uses thermoelectric infrared sensors and of which this work continues on. Conclusions regarding what this system is capable of are drawn with its inherent strengths and weaknesses.
|
7 |
Radar and Thermopile Sensor Fusion for Pedestrian DetectionRouhani, Shahin January 2005 (has links)
<p>During the last decades, great steps have been taken to decrease passenger fatality in cars. Systems such as ABS and airbags have been developed for this purpose alone. But not much effort has been put into pedestrian safety. In traffic today, pedestrians are one of the most endangered participants and in recent years, there has been an increased demand for pedestrian safety from the European Enhanced Vehicle safety Committee and the European New Car Assessment Programme has thereby developed tests where pedestrian safety is rated. With this, detection of pedestrians has arised as a part in the automotive safety research.</p><p>This thesis provides some of this research available in the area and a brief introduction to some of the sensors readily available. The objective of this work is to detect pedestrians in front of a vehicle by using thermoelectric infrared sensors fused with short range radar sensors and also to minimize any missed detections or false alarms. There has already been extensive work performed with the thermoelectric infrared sensors for this sole purpose and this thesis is based on that work.</p><p>Information is provided about the sensors used and an explanation of how they are set up during this work. Methods used for classifying objects are given and the assumptions made about pedestrians in this system. A basic tracking algorithm is used to track radar detected objects in order to provide the fusion system with better data. The approach chosen for the sensor fusion is a central-level fusion where the probabilities for a pedestrian from the radars and the thermoelectric infrared sensors are combined using Dempster-Shafer Theory and accumulated over time in the Occupancy Grid framework. Theories that are extensively used in this thesis are explained in detail and discussed accordingly in different chapters.</p><p>Finally the experiments undertaken and the results attained from the presented system are shown. A comparison is made with the previous detection system, which only uses thermoelectric infrared sensors and of which this work continues on. Conclusions regarding what this system is capable of are drawn with its inherent strengths and weaknesses.</p>
|
8 |
Calibration of Multispectral SensorsIsoz, Wilhelm January 2005 (has links)
This thesis describes and evaluates a number of approaches and algorithms for nonuniform correction (NUC) and suppression of fixed pattern noise in a image sequence. The main task for this thesis work was to create a general NUC for infrared focal plane arrays. To create a radiometrically correct NUC, reference based methods using polynomial approximation are used instead of the more common scene based methods which creates a cosmetic NUC. The pixels that can not be adjusted to give a correct value for the incomming radiation are defined as dead. Four separate methods of identifying dead pixels are used to find these pixels. Both the scene sequence and calibration data are used in these identifying methods. The algorithms and methods have all been tested by using real image sequences. A graphical user interface using the presented algorithms has been created in Matlab to simplify the correction of image sequences. An implementation to convert the corrected values from the images to radiance and temperature is also performed.
|
9 |
Modélisation des échanges thermiques et radiatifs en environnement urbain à très haute résolution spatiale : aide à l'interprétation des mesures par télédétection infrarouge / Modelling of radiative heat exchange in urban environments with very high spatial resolution : assistance in the interpretation of measurements by infrared remote sensingLalanne, Nicolas 21 July 2015 (has links)
La consommation énergétique en France a pour origine principale le secteur résidentiel et tertiaire. En environnement urbain, l’habitat est encore principalement ancien, avec des déperditions importantes. L’amélioration des performances énergétiques passe par la quantification des pertes, basée sur une méthode globale de mesure par caméra infrarouge à haute résolution spatiale.L’interprétation des images obtenues nécessite une description des termes radiatifs composant le signal, pour cela un simulateur original est mis au point. A partir d’une scène tridimensionnelle maillée, le champ de température est calculé pour les parois 1D et pour les ponts thermiques 2D, par le programme thermique développé à cet effet, SUSHI qui s’appuie sur un pré-calcul d’éclairement solaire et un pré-calcul de réponse indicielle 2D. Le signal du capteur infrarouge est alors modélisé en adaptant le code radiatif MOHICANS.Cette chaîne logicielle a l’originalité de proposer une fusion efficace des simulations de la réponse dynamique en température et en luminance de zones présentant un transfert 1Dà travers la paroi et de zones présentant un transfert 2D.La mise en œuvre de la campagne expérimentale BATIR a permis de mesurer le comportement thermique d’une façade de bâtiment et de son environnement radiato-convectif. Une validation ponctuelle des températures calculées par SUSHI a été réalisée par confrontation à une mesure par thermocouple. Des caméras infrarouges ont été mises en œuvre afin de collecter la luminance issue de la façade étudiée en bande II et III. Les luminances calculées par MOHICANS sont comparées à ces acquisitions, et valident la chaîne logicielle à ce niveau. / The main origin of the energy consumption in France is the residential and commercial sector. In urban environment, housing is mostly old, which means high heat losses. The improvement of energy performances requires the quantification of heat losses. This quantification may be based on a global measurement by an infrared camera with high spatial resolution.The infrared image interpretation requires a description of the radiative terms that make up the signal. For that purpose, a novel simulator is developed. The temperature field is calculated from a meshed three-dimensional scene composed of 1D walls and 2D thermal bridges. This operation is realized by the developed thermal software SUSHI, which is based on solar irradiance pre-computation and on 2D unitary response pre-computation. The software uses as input environmental data measured in the field. The infrared sensor signal is then modelled by adapting the radiative program MOHICANS. This software chain has the distinct advantage of an efficient fusion of dynamic response simulations of temperature and radiance, for areas with unidirectional and 2D heat transfer.The experimental campaign BATIR was set-up for measuring the thermal behavior of a building façade and its convective and radiative environment. A local validation of temperature calculation by SUSHI was realized through a comparison with thermocouple measurement results. Infrared cameras were operated in order to collect the radiance coming from the analyzed façade in band II and III. The radiances calculated by MOHICANS were compared with these acquisitions in order to validate the software chain at this level.
|
10 |
Pac-King : Placement of IR Sensors on Line Following Robot and Construction of a Gripper and Lift / Pac-King : Placering av IR Sensorer på Linjeföljarrobot och Konstruktion av ett Grepp och LiftAntonsson, Tess, Jönsson, Sofia January 2019 (has links)
Line following robots are a practical mechatronics solution in a world that is becoming more and more automated. With added gripping and lifting abilities, a very versatile robot can be created. The goal of this thesis was to create a prototype that could navigate a black line using infrared sensors whilst gripping and lifting a package. A working prototype was built and five different sensor placements were evaluated to assess which was optimal for linefollowing. The results showed that too close placement of the sensors led to a less stable system while more distance between the sensors made a faster and more accurate system. / Linjeföljarrobotar är en praktisk mekatroniklösning i en värld som blir allt mer automatiserad. Med grepp- och lyftförmågor kan en väldigt anpassningsbar robot skapas. Målet med detta arbete var att skapa en prototyp som kunde navigera en svart linje med hjälp av infraröda sensorer medan den greppade och lyfte ett paket. En fungerande prototyp byggdes och fem olika sensorplaceringar utvärderades för att bedöma vilken som var optimal för att följa en linje. Resultatet visade att för nära placering av sensorerna skapade instabilitet. Ett större avstånd mellan sensorerna var att föredra då detta gav ett snabbare och stabilare system.
|
Page generated in 0.0745 seconds