11 |
Planejamento de inibidores das enzimas diidroorotato desidrogenase de Trypanosoma cruzi e Leishmania major / Design of inhibitors for dihydroorotate dehydrogenase from Trypanosoma cruzi and Leishmania majorPinheiro, Matheus Pinto 25 April 2012 (has links)
A enzima diidroorotato desidrogenase (DHODH) catalisa a conversão de diidroorotato em orotato, a quarta e única reação redox da via metabólica da síntese de novo de nucleotídeos de pirimidina. DHODH tem sido explorada como alvo validado para terapias contra doenças proliferativas e parasitárias e, em particular, tem sido considerada um alvo atraente para o planejamento de fármacos com ação contra tripanossomatídeos, como parasitos dos gêneros Trypanosoma e Leishmania, que conjuntamente são responsáveis por doenças e mortes que acometem milhões de pessoas em todo o mundo. Neste trabalho, através da combinação de técnicas de DNA recombinante, termofluor, cristalografia de raios-X e ensaios de inibição in vitro e in silico, foi possível identificar sítios alvos na estrutura da DHODH para o desenvolvimento de ligantes, identificar inibidores potentes e seletivos contra as DHODHs de Leishmania major e Trypanosoma cruzi e, caracterizar seus mecanismos de inibição. Finalmente, o efeito leishmanicida observado em nossos ensaios anti-promastigota e os baixos níveis de citotoxicidade observados em células de mamíferos sugerem que alguns dos compostos identificados durante o desenvolvimento deste projeto como potentes inibidores da enzima DHODH poderão ser utilizados como protótipos para o desenvolvimento de fármacos com ação leishmanicida e tripanocida. Combinados, nossos resultados forneceram uma nova e importante contribuição para a compreensão do mecanismo de ação das enzimas DHODH da classe 1A e para o desenho de fármacos baseado nas estruturas das enzimas diidroorotato desidrogenase de Leishmania major e Trypanosoma cruzi. Além disso, a alta identidade sequencial e estrutural observada entre as enzimas de tripanossomatídeos sugerem que uma única estratégia para o desenho de inibidores baseado em estrutura poderá ser usada para explorar a enzima DHODH como alvo terapêutico para várias doenças negligenciadas tropicais como Leishmaniose, Doença do sono e Doença de Chagas / Dihydroorotate dehydrogenase (DHODH) catalyses the conversion of dihydroorote to orotate, the fourth step and only redox reaction in the de novo pyrimidine biosynthetic pathway. DHODH has been exploited as a validated target for therapy against proliferative and parasitic diseases, and in particular, has been considered to be an attractive target for drug development against trypanosomatids, such as parasites from the genera Leishmania and Trypanosoma that collectively cause disease and death in millions of humans. In this work, by combining recombinant DNA technology, thermofluor, X-ray crystallography and in vitro and in silico inhibition assays, we have been able to identify target sites for ligand design, identify potent and selective inhibitors against trypanosomatid DHODHs and fully characterize their mechanism of inibition. Finally, the anti-leishmanial effect observed in our anti-promastigote assays and the low citotoxicity levels observed against mammaliam cells strongly suggest that some of the compounds identified during the development of this project as potent DHODH inhibitors can be used as prototytes for the development of anti-leishmania and anti-trypanosoma drugs. Altogether, our findings provide a new and important contribution to the understanding of the mechanism of action of class 1A DHODHs and for the structure-assisted design of inhibitors against trypanosomatid DHODHs. Furthermore, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to exploit DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping Sickness and Chagas\' Disease.
|
12 |
Some synthetic carbohydrate chemistry : natural product synthesis, rational inhibitor design and the development of a new reagentGoddard-Borger, Ethan D January 2008 (has links)
Earnest carbohydrate research was initiated in the nineteenth century by several talented organic chemists. Carbohydrates, now known to play essential roles in a range of fundamental biological processes, are presently studied by a throng of scientists from many fields, including: biochemistry, molecular biology, immunology, structural biology, medicine, agriculture, pharmacology and, of course, chemistry. Organic chemistry remains as relevant to carbohydrate research as it has ever been; its practitioners, with their skills in synthesis and fundamental understanding of molecules, are truly indispensable. This thesis details various synthetic endeavours within the field of carbohydrate chemistry. It describes four projects with goals as diverse as natural product synthesis, rational inhibitor design and the development of new reagents in organic synthesis. The first chapter provides an account of the synthesis of compound 1, a potent germination stimulant present in smoke, from D-xylose. Many analogues of 1 were prepared from carbohydrates and evaluated as germination stimulants, which permitted the dissemination of several structure-activity relationships. Subsequent chapters describe the design and preparation of inhibitors for various carbohydrate-processing enzymes. Compounds 55 and 56 were sought after as putative synergistic inhibitors of a Vitis vinifera (grape) uridine diphospho-glucose:flavonoid 3-O-glucosyltransferase (VvGT1). It was hoped that crystallographic investigations of VvGT1-UDP-2/3 complexes by a collaborator, structural biologist Professor Gideon Davies, would aid in clarifying mechanistic aspects of this enzyme.Compounds 114, 115 and 118 were prepared as putative arabinanase inhibitors. Once again, this work was undertaken to assist in crystallographic studies that might provide a better understanding of how these enzymes operate. The thesis concludes by describing the development of compound 152.HCl, a novel reagent for the diazotransfer reaction. Previously, this reaction utilised trifluoromethanesulfonyl azide (TfN3), an expensive and explosive liquid with a poor shelf-life, to convert a primary amine directly into an azide. Reagent 152.HCl was developed to replace TfN3 in this useful synthetic transformation. A one-pot procedure enabled the simple and inexpensive preparation of 152.HCl, which was demonstrated to be shelf-stable, crystalline and, crucially, effective in the diazotransfer reaction.
|
13 |
Planejamento de inibidores das enzimas diidroorotato desidrogenase de Trypanosoma cruzi e Leishmania major / Design of inhibitors for dihydroorotate dehydrogenase from Trypanosoma cruzi and Leishmania majorMatheus Pinto Pinheiro 25 April 2012 (has links)
A enzima diidroorotato desidrogenase (DHODH) catalisa a conversão de diidroorotato em orotato, a quarta e única reação redox da via metabólica da síntese de novo de nucleotídeos de pirimidina. DHODH tem sido explorada como alvo validado para terapias contra doenças proliferativas e parasitárias e, em particular, tem sido considerada um alvo atraente para o planejamento de fármacos com ação contra tripanossomatídeos, como parasitos dos gêneros Trypanosoma e Leishmania, que conjuntamente são responsáveis por doenças e mortes que acometem milhões de pessoas em todo o mundo. Neste trabalho, através da combinação de técnicas de DNA recombinante, termofluor, cristalografia de raios-X e ensaios de inibição in vitro e in silico, foi possível identificar sítios alvos na estrutura da DHODH para o desenvolvimento de ligantes, identificar inibidores potentes e seletivos contra as DHODHs de Leishmania major e Trypanosoma cruzi e, caracterizar seus mecanismos de inibição. Finalmente, o efeito leishmanicida observado em nossos ensaios anti-promastigota e os baixos níveis de citotoxicidade observados em células de mamíferos sugerem que alguns dos compostos identificados durante o desenvolvimento deste projeto como potentes inibidores da enzima DHODH poderão ser utilizados como protótipos para o desenvolvimento de fármacos com ação leishmanicida e tripanocida. Combinados, nossos resultados forneceram uma nova e importante contribuição para a compreensão do mecanismo de ação das enzimas DHODH da classe 1A e para o desenho de fármacos baseado nas estruturas das enzimas diidroorotato desidrogenase de Leishmania major e Trypanosoma cruzi. Além disso, a alta identidade sequencial e estrutural observada entre as enzimas de tripanossomatídeos sugerem que uma única estratégia para o desenho de inibidores baseado em estrutura poderá ser usada para explorar a enzima DHODH como alvo terapêutico para várias doenças negligenciadas tropicais como Leishmaniose, Doença do sono e Doença de Chagas / Dihydroorotate dehydrogenase (DHODH) catalyses the conversion of dihydroorote to orotate, the fourth step and only redox reaction in the de novo pyrimidine biosynthetic pathway. DHODH has been exploited as a validated target for therapy against proliferative and parasitic diseases, and in particular, has been considered to be an attractive target for drug development against trypanosomatids, such as parasites from the genera Leishmania and Trypanosoma that collectively cause disease and death in millions of humans. In this work, by combining recombinant DNA technology, thermofluor, X-ray crystallography and in vitro and in silico inhibition assays, we have been able to identify target sites for ligand design, identify potent and selective inhibitors against trypanosomatid DHODHs and fully characterize their mechanism of inibition. Finally, the anti-leishmanial effect observed in our anti-promastigote assays and the low citotoxicity levels observed against mammaliam cells strongly suggest that some of the compounds identified during the development of this project as potent DHODH inhibitors can be used as prototytes for the development of anti-leishmania and anti-trypanosoma drugs. Altogether, our findings provide a new and important contribution to the understanding of the mechanism of action of class 1A DHODHs and for the structure-assisted design of inhibitors against trypanosomatid DHODHs. Furthermore, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to exploit DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping Sickness and Chagas\' Disease.
|
14 |
Molecular Mechanisms of Resistance and Structure-Based Drug Design in Homodimeric Viral ProteasesLockbaum, Gordon J. 17 April 2020 (has links)
Drug resistance is a global health threat costing society billions of dollars and impacting millions of lives each year. Current drug design strategies are inadequate because they focus on disrupting target activity and not restricting the evolutionary pathways to resistance. Improved strategies would exploit the structural and dynamic changes in the enzyme–inhibitor system integrating data from many inhibitors and variants.
Using HIV-1 protease as a model system, I aimed to elucidate the underlying resistance mechanisms, characterize conserved protease-inhibitor interactions, and generate more robust inhibitors by applying these insights. For primary mechanisms of resistance, comparing interactions at the protease–inhibitor interface showed how specific modifications affected potency. For mutations distal to the active site, molecular dynamics simulations were necessary to elucidate how changes propagated to reduce inhibitor binding. These insights informed inhibitor design to improve potency against highly resistant variants by optimizing hydrogen bonding. A series of hybrid inhibitors was also designed that showed excellent potency by combining key moieties of multiple FDA-approved inhibitors. I characterized the structural basis for alterations in binding affinity in HIV-1 protease both from mutations and inhibitors.
I applied these strategies to HTLV-1 protease, a potential drug target. I identified the HIV-1 inhibitor darunavir as a viable scaffold and evaluated analogues, leading to a low-nanomolar compound with potential for optimization. Hopefully, insights from this thesis will lead to the development of potent HTLV-1 protease inhibitors. More broadly, these inhibitor design strategies are applicable to other rapidly evolving targets, thereby reducing drug resistance rates in the future.
|
15 |
Design and Synthesis of Amino Acid-based Inhibitors Against Key EnzymesMutthamsetty, Vinay January 2017 (has links)
No description available.
|
Page generated in 0.0794 seconds