• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 25
  • 20
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Overexpression of HGF/MET axis along with p53 inhibition induces de novo glioma formation in mice

Qin, Yuan, Musket, Anna, Kou, Jianqun, Preiszner, Johanna, Tschida, Barbara R., Qin, Anna, Land, Craig A., Staal, Ben, Kang, Liang, Tanner, Kirk, Jiang, Yong, Schweitzer, John B., Largaespada, David A., Xie, Qian 01 January 2020 (has links)
BACKGROUND: Aberrant MET receptor tyrosine kinase (RTK) activation leads to invasive tumor growth in different types of cancer. Overexpression of MET and its ligand hepatocyte growth factor (HGF) occurs more frequently in glioblastoma (GBM) than in low-grade gliomas. Although we have shown previously that HGF-autocrine activation predicts sensitivity to MET tyrosine kinase inhibitors (TKIs) in GBM, whether it initiates tumorigenesis remains elusive. METHODS: Using a well-established Sleeping Beauty (SB) transposon strategy, we injected human and cDNA together with a short hairpin siRNA against (SB-hHgf.Met.ShP53) into the lateral ventricle of neonatal mice to induce spontaneous glioma initiation and characterized the tumors with H&E and immunohistochemistry analysis. Glioma sphere cells also were isolated for measuring the sensitivity to specific MET TKIs. RESULTS: Mixed injection of SB-hHgf.Met.ShP53 plasmids induced de novo glioma formation with invasive tumor growth accompanied by HGF and MET overexpression. While glioma stem cells (GSCs) are considered as the tumor-initiating cells in GBM, both SB-hHgf.Met.ShP53 tumor sections and glioma spheres harvested from these tumors expressed GSC markers nestin, GFAP, and Sox 2. Moreover, specific MET TKIs significantly inhibited tumor spheres' proliferation and MET/MAPK/AKT signaling. CONCLUSIONS: Overexpression of the HGF/MET axis along with p53 attenuation may transform neural stem cells into GSCs, resulting in GBM formation in mice. These tumors are primarily driven by the MET RTK pathway activation and are sensitive to MET TKIs. The SB-hHgf.Met.ShP53 spontaneous mouse glioma model provides a useful tool for studying GBM tumor biology and MET-targeting therapeutics.
22

Identification and validation of DKK1 as a novel candidate therapeutic target for glioblastoma / DKK1 as a novel candidate therapeutic target of glioblastoma

Yelle, Nicolas 22 November 2018 (has links)
Glioblastoma (GBM) is a very aggressive and invasive tumour that relapses within nine months of diagnosis and remains incurable despite advances in multimodal therapy including surgical resection, chemotherapy and radiation. Poor patient outcome has been correlated to specific markers of brain tumour initiating cells (BTIC) and intratumoural heterogeneity (ITH), which have also been associated with treatment resistance and tumour recurrence. ITH can be explained at the cellular level by the existence of multiple populations of cancer cells, including some which have acquired stemness properties like self-renewal, proliferation, and multilineage differentiation, also known as cancer stem cells (CSCs). In brain tumours, CSCs or BTICs, have been shown to be resistant to both chemotherapy and radiation treatment, allowing them to escape therapy and consequently generate for tumour recurrence. As a result, therapies that focus on targeting the BTIC compartment within the bulk GBM tumour would provide better treatment and prognosis for patients. To profile GBM BTICs we conducted two transcriptomic screens. The first compared GBM BTICs to neural stem cells (NSCs), their healthy counterparts, and for the second we developed a pipeline utilizing a dynamic BTIC patient-derived xenograft (PDX) model of human GBM recurrence allowing for the profiling of GBM BTICs at engraftment, after chemoradiotherapy delivery in a phase we have termed "minimal residual disease" (MRD), and at tumour recurrence. In this study, Dickkopf-1 (DKK1) was identified as a potential therapeutic target for GBM from each transcriptomic screen and was studied using short hairpin knockdowns, blockade with monoclonal antibodies, and subsequent functional stem cell assays. / Thesis / Master of Science (MSc) / Glioblastoma (GBM) is a very aggressive tumour that relapses within nine months of diagnosis and remains incurable despite chemotherapy, radiation, and surgery. Relapse is believed to be caused by the presence of a wide variety of cell types, including cancer stem cells (CSCs), which have been shown to be resistant to both chemotherapy and radiation in GBM. As a result, therapies that focus on targeting the CSCs within the bulk GBM tumour would provide better treatment for patients. In this study, we analyzed this cell population by conducting two screens. The first compared the level at which genes are expressed in GBM CSCs in comparison to how they are expressed in their healthy counterparts, neural stem cells, whereas the second compared the primary patient GBM tumour to its relapsed form in a mouse model of the disease. In this study, the protein Dickkopf-1 (DKK1) was identified and validated as a potential therapeutic target of GBM using well established molecular and stem cell functional assays.
23

Analyse génotypique des cellules initiatrices de tumeurs exprimant CD133 dans le neuroblastome

Cournoyer, Sonia 03 1900 (has links)
Le neuroblastome (NB) est la tumeur solide extracranienne la plus fréquente et mortelle chez les jeunes enfants. Il se caractérise par une résistance à la chimiothérapie possiblement en partie dû à la présence de cellules initiatrices de tumeurs (TICs). Des études ont mis en évidence le rôle de CD133 comme un marqueur des TICs dans divers types de cancers. Les buts de notre travail étaient d’abord de démontrer les vertus de TICs des cellules exprimant CD133 et ensuite, en utilisant une analyse globale du génome avec des polymorphismes nucléotidiques simples (SNPs), d’effectuer une analyse différentielle entre les TICs et les autres cellules du NB afin d’en identifier les anomalies génétiques spécifiques. Des lignées cellulaires de NB ont été triées par cytométrie de flux afin d’obtenir deux populations: une enrichie en CD133 (CD133high), l’autre faible en CD133 (CD133low). Afin de déterminer si ces populations cellulaires présentent des propriétés de TICs, des essais sur les neurosphères, les colonies en agar mou et les injections orthotopiques de 500 cellules sélectionnées dans 11 souris ont été réalisées. Après une isolation de l’ADN des populations sélectionnées, nous avons effectué une analyse génotypique par SNP utilisant les puces « Affymetrix Genome-Wide Human SNP Array 6.0 ». Pour vérifier l’expression des gènes identifiés, des Western Blots ont été réalisés. Nos résultats ont démontré que la population CD133 avait des propriétés de TICs in vitro et in vivo. L’analyse génotypique différentielle a permis d’identifier deux régions communes (16p13.3 and 19p13.3) dans la population CD133high ayant des gains et deux autres régions (16q12.1 and 21q21.3) dans la population CD133low possédant des pertes d’hétérozygoties (LOH). Aucune perte n’a été observée. Parmi les gènes étudiés, l’expression protéique d’éphrine-A2 était corrélée à celle de CD133 dans 6 tumeurs et 2 lignées cellulaires de NB. De plus, l’augmentation de la concentration d’anticorps anti-éphrine-A2 dans le milieu diminue la taille des neurosphères. Ainsi, la population CD133high, qui a des vertus de TICs, possède des caractéristiques génotypiques différentes par rapport à celle CD133low. La présence d’éphrine-A2 dans les cellules exprimant CD133 souligne son importance dans le développement des TICs. Ces résultats suggèrent la présence de potentielle cible pour de nouvelles thérapeutiques ciblant les TICs mise en évidence par l’étude génomique. / Neuroblastoma (NB) is the most common and deadly extracranial solid tumor of childhood characterized by a resistance to chemotherapy possibly due to the presence of tumor initiating cells (TICs). Studies showed the role of CD133 as a marker of TICs in various types of cancers. Our goals were first to demonstrate the stemness of TICs expressing CD133 and then, using a global genomic analysis with single nucleotide polymorphism (SNPs), to perform a differential analysis between TICs and other cells of NB to identify the specific genetic abnormalities. NB cell lines were sorted by flow cytometry to obtain two populations: one enriched in CD133 (CD133high), the other low in CD133 (CD133low). To determine whether these cell populations have TICs properties, we test the ability of cells to form either neurosphères or, colonies in soft agar and we also test their carcinogenic properties by orthotopic injections of 500 selected cells in 11 mice. After a DNA extraction on selected populations, a differential genotyping analysis has been made with Affymetrix Genome-Wide Human SNP Array 6.0. To verify the expression of the genes identified, Western blots had been made. Our results have demonstrated that CD133high population presented TICs properties in vitro and in vivo. The differential genotyping analysis allowed identifying two gains common regions (16p13.3 and 19p13.3) in CD133high population and two others loss of heterozygosity (LOH) (16q12.1 and 21q21.3) in CD133low population . No losses were observed. Among the genes studied, ephrin-A2 protein expression was correlated to CD133 expression in 6 NB tumors and 2 NB cell lines. Also, ephrin-A2’s increased concentration influenced the neurospheres by decreasing their size. Thereby, CD133high population, which had TICs properties, possess different genotyping characteristics compared to CD133low population. The presence of ephrine-A2 in cells expressing CD133 emphasizes its importance in the development of TICs. These results suggest the presence of potential target for new therapies targeting the TICs demonstrated by the genomic study.
24

O PAPEL PROGNÓSTICO DAS CÉLULAS INICIADORAS TUMORAIS (CIT) NO CÂNCER DE MAMA.

Paula, Gabriela Moura de 29 August 2014 (has links)
Made available in DSpace on 2016-08-10T10:38:56Z (GMT). No. of bitstreams: 1 GABRIELA MOURA DE PAULA.pdf: 7198154 bytes, checksum: f6f3fcaaba289c4b737ab5cfc3d5363a (MD5) Previous issue date: 2014-08-29 / Breast cancer is the second most common cancer in the world. It is a complex and heterogeneous disease with diverse clinical features, cellular origin, histological types, mutations, prognosis and therapeutic possibilities. A subpopulation of cells with the ability of self-renewing, increased proliferation and resistance to chemotherapy has been described in breast cancer, named tumor-initiating cells (TICs). The aim of this study was to review and integrate, through meta-analysis, the studies that have investigated the possible associations between tumor-initiating cells, defined by CD44+ CD24- low phenotype and ALDH expression, by using immunohistochemistry, and prognostic aspects of breast cancer. Twenty studies met the inclusion criteria for this meta-analysis, 13 evaluated the CD44+ CD24- low phenotype, 11 evaluated the expression of ALDH and four studies evaluated both markers. The results of the metaanalysis demonstrated statistically significant associations between the triple negative phenotype and the CITs, including both the expression of CD44+ CD24- low phenotype (p < 0.0001), as the expression of ALDH (p = 0.0004). Associations investigated for HER2 overexpression presented conflicting results, whereas CD44+ CD24- low phenotype was not significantly associated with this parameter (p = 0.1989), ALDH expression was significantly associated with HER2 (p < 0.0001). An inverse association, however, statistically significant, was observed between the presence of lymph node metastases and CD44+ CD24- low phenotype (p = 0.0047), while the expression of ALDH was not significantly associated with this parameter (p = 2019). Based on the analyses carried out, it can be concluded that the markers, CD44+ CD24- low and ALDH, represent an important tool in identifying tumor initiating cells in breast carcinomas and that statistical associations observed in this study raise important perspectives for developing molecular therapies based on presence of the CD44+ CD24- low phenotype and ALDH expression in the treatment of triple-negative breast carcinomas. / O câncer de mama é o segundo câncer mais comum do mundo. É uma doença complexa e heterogênea com diversas características clínicas, histológicas, origem celular, mutações, prognóstico e possibilidades terapêuticas. Uma subpopulação de células com a capacidade de auto-renovação, proliferação celular e maior resistência à quimioterápicos tem sido descrita no câncer de mama, sendo estas denominadas célulasiniciadoras tumorais (CITs). O objetivo deste trabalho consistiu em revisar e integrar , por meio de meta-análise, os estudos que investigaram as possíveis associações entre células iniciadoras tumorais, definidas pelo fenótipo CD44+ CD24- low e expressão de ALDH, por método de imuno-histoquímica, e aspectos prognósticos do câncer de mama. Vinte estudos preencheram os critérios de inclusão para esta meta-análise, 13 avaliaram o fenótipo CD44+ CD24- low, 11 avaliaram a expressão de ALDH e quatro estudos avaliaram ambos marcadores. Os resultados da meta-análise demonstram associações estatisticamente significativas entre o fenótipo triplo negativo e as CITs, incluindo tanto a expressão do fenótipo CD44+ CD24- low (p < 0,0001), como a expressão de ALDH (p = 0,0004). Associações investigadas para a hiperexpressão de HER2 apresentaram resultados conflitantes, sendo que fenótipo CD44+ CD24- low não foi associado de forma significativa à este parâmetro (p = 0,1989), enquanto a expressão de ALDH esteve significativamente associada ao HER2 (p < 0,0001). Uma associação inversa, porém, estatisticamente significativa, foi observada entre a presença de metástases linfonodais e o fenótipo CD44+ CD24- low (p = 0,0047), enquanto a expressão de ALDH não esteve significativamente associada a este parâmetro (p = 2019). Com base nas análises realizadas, é possível concluir que os marcadores CD44+ CD24- low e ALDH representam uma importante ferramenta na identificação de células tumorais nos carcinomas mamários e que as associações estatísticas observadas criam perspectivas importantes para o desenvolvimento de terapias moleculares baseadas na presença de CD44+ CD24- low e de ALDH no tratamento dos carcinomas triplo negativos.
25

O papel da quinase Aurora A na biologia das células iniciadoras de turmor pulmonares com mutação em KRAS / The role of Aurora A kinase in the biology of lung tumor initiating cells with KRAS mutations

Scalabrini, Luiza Coimbra 06 December 2016 (has links)
Mutações ativadoras no gene KRAS são prevalentes em cancer de pulmão e a as vias de sinalização de RAS estão aumentadas em células iniciadoras de tumor (CITs), que são definidas como células autorrenováveis capazes de iniciar a formação tumoral, sustentar o crescimento tumoral e promover a disseminação tumoral. Entretanto, terapias direcionadas a RAS não foram efetivas até hoje e a identificação de alvos de KRAS que contribuam para o fenótipo oncogênico é necessária. Como a quinase Aurora A (AURKA) já foi implicada, tanto na oncogênese induzida por KRAS, quanto em promover a função das CITs, nós hipotetizamos que a inibição das vias de AURKA seria detrimental para a função de CITs pulmonares portadoras de KRAS oncogênica, desta forma diminuindo o comportamento maligno do câncer de pulmão. Para avaliar a função das CITs, nós usamos ensaios de crescimento de tumoresferas que permitem o crescimento seletivo de CITs in vitro. As linhagens pulmonares positivas para KRAS H358 e A549 formaram tumoresferas em cultura de baixa aderência e, quando comparadas às linhagens parentais, às células oriundas de tumoresferas apresentaram maior capacidade clonogênica in vitro e maior tumorigenicidade in vivo. Além disso, uma análise por qPCR revelou que as células oriundas de tumoresferas possuem expressão aumentada de fatores de células tronco, uma característica de CITs. Em seguida, nós inibimos a AURKA nas linhagens pulmonares positivas para KRAS H358 e A549 por interferência de RNA (RNAi) ou com um inibidor das quinases Aurora (AI II). A inibição de AURKA diminuiu a formação de tumoresferas e o crescimento destas em culturas seriadas, além de reduzir a capacidade clonogênica das células oriundas de tumoresferas. Estes resultados indicam que a AURKA é importante para a autorrenovação e a oncogenicidade de CITs, e que a AURKA induz o fenótipo tronco-tumoral, o que é corroborado pelo achado de que a inibição de AURKA nas tumoresferas reduz a expressão de fatores de célula tronco. Um destes fatores regulados por AURKA é o marcador de superfície de célula tronco CD24. De fato, quando comparadas às células cultivadas de forma aderente, as células oriundas de tumoresferas apresentam maior número de células positivas para CD24 (CD24+) e estes números são reduzidos pelo tratamento com AI II. Finalmente, nós purificamos células H358 CD24+ por citometria de fluxo e mostramos que, quando comparadas às células negativas para CD24, as células CD24+ apresentam maior capacidade de formar tumoresferas em culturas seriadas, e o tratamento com AI II inibe preferencialmente a capacidade de células CD24+ de formarem tumoresferas. Nossos resultados sugerem que uma terapia baseada na inibição de AURKA pode reduzir o número e função de CITs pulmonares portadoras de KRAS oncogênica e, portanto, pode representar uma estratégia terapêutica atraente para reduzir a recidiva e metástase no câncer de pulmão induzido por KRAS. / Activating mutations in KRAS are prevalent in lung cancer and RAS sinaling is enhanced in cancer initiating cells (CICs), which are defined as self-renewing tumor cells able to initiate tumor formation, sustain tumor growth and drive tumor dissemination. However, therapies targeted to oncogenic RAS have been ineffective to date and identification of KRAS targets that impinge on the oncogenic phenotype is warranted. Because Aurora kinase A (AURKA) has been implicated both in RAS oncogenesis and in promoting CIC function, we hypothesized that targeting AURKA pathways would impair KRAS-positive lung CIC function, thereby decreasing lung cancer malignant behavior. To evaluate CIC function, we used tumorsphere assays that allow selective growth of CICs in vitro. KRAS positive lung cancer H358 and A549 cells formed tumorspheres under low attachment conditions, and, when compared to the parental cell lines, sphere-forming cells had increased clonogenic ability in vitro and increased tumorigenicity in vivo. In addition, qPCR analysis revealed that tumorsphere cells displayed increased expression of stem cell factors, a hallmark of CICs. Next, we targeted AURKA in KRAS positive lung cancer H358 and A549 cells by RNA interference (RNAi) or with an Aurora inhibitor (AI II). AURKA targeting decreased tumorsphere formation and growth in serial cultures and reduced clonogenic growth of tumorsphere-forming cells. These results indicate that AURKA is important for CIC selfrenewal and oncogenicity and that AURKA induces a CIC phenotype, which is further underscored by the finding that AURKA targeting in tumorspheres decreases expression of stem cell factors. One such factor shown to be regulated by AURKA is the stem cell surface marker CD24. In fact, when compared to adherent cultures, A549 and H358 tumorspheres display increased numbers of CD24-positive (CD24+) cells and these numbers are reduced by AI II treatment. Finally we purified H358 CD24+cells by flow cytometry and showed that, when compared to CD24-negative cells, CD24+ cells have increased ability to form tumorspheres in serial cultures, and AI II treatment preferentially reduced the ability of CD24+ cells to form tumorspheres. Our results suggest that AURKA inhibition therapy can reduce the number and function of KRAS-positive lung CICs, and, therefore might be an attractive therapeutic strategy to reduce recurrence and metastasis in KRAS-induced lung cancer.
26

Analyse génotypique des cellules initiatrices de tumeurs exprimant CD133 dans le neuroblastome

Cournoyer, Sonia 03 1900 (has links)
Le neuroblastome (NB) est la tumeur solide extracranienne la plus fréquente et mortelle chez les jeunes enfants. Il se caractérise par une résistance à la chimiothérapie possiblement en partie dû à la présence de cellules initiatrices de tumeurs (TICs). Des études ont mis en évidence le rôle de CD133 comme un marqueur des TICs dans divers types de cancers. Les buts de notre travail étaient d’abord de démontrer les vertus de TICs des cellules exprimant CD133 et ensuite, en utilisant une analyse globale du génome avec des polymorphismes nucléotidiques simples (SNPs), d’effectuer une analyse différentielle entre les TICs et les autres cellules du NB afin d’en identifier les anomalies génétiques spécifiques. Des lignées cellulaires de NB ont été triées par cytométrie de flux afin d’obtenir deux populations: une enrichie en CD133 (CD133high), l’autre faible en CD133 (CD133low). Afin de déterminer si ces populations cellulaires présentent des propriétés de TICs, des essais sur les neurosphères, les colonies en agar mou et les injections orthotopiques de 500 cellules sélectionnées dans 11 souris ont été réalisées. Après une isolation de l’ADN des populations sélectionnées, nous avons effectué une analyse génotypique par SNP utilisant les puces « Affymetrix Genome-Wide Human SNP Array 6.0 ». Pour vérifier l’expression des gènes identifiés, des Western Blots ont été réalisés. Nos résultats ont démontré que la population CD133 avait des propriétés de TICs in vitro et in vivo. L’analyse génotypique différentielle a permis d’identifier deux régions communes (16p13.3 and 19p13.3) dans la population CD133high ayant des gains et deux autres régions (16q12.1 and 21q21.3) dans la population CD133low possédant des pertes d’hétérozygoties (LOH). Aucune perte n’a été observée. Parmi les gènes étudiés, l’expression protéique d’éphrine-A2 était corrélée à celle de CD133 dans 6 tumeurs et 2 lignées cellulaires de NB. De plus, l’augmentation de la concentration d’anticorps anti-éphrine-A2 dans le milieu diminue la taille des neurosphères. Ainsi, la population CD133high, qui a des vertus de TICs, possède des caractéristiques génotypiques différentes par rapport à celle CD133low. La présence d’éphrine-A2 dans les cellules exprimant CD133 souligne son importance dans le développement des TICs. Ces résultats suggèrent la présence de potentielle cible pour de nouvelles thérapeutiques ciblant les TICs mise en évidence par l’étude génomique. / Neuroblastoma (NB) is the most common and deadly extracranial solid tumor of childhood characterized by a resistance to chemotherapy possibly due to the presence of tumor initiating cells (TICs). Studies showed the role of CD133 as a marker of TICs in various types of cancers. Our goals were first to demonstrate the stemness of TICs expressing CD133 and then, using a global genomic analysis with single nucleotide polymorphism (SNPs), to perform a differential analysis between TICs and other cells of NB to identify the specific genetic abnormalities. NB cell lines were sorted by flow cytometry to obtain two populations: one enriched in CD133 (CD133high), the other low in CD133 (CD133low). To determine whether these cell populations have TICs properties, we test the ability of cells to form either neurosphères or, colonies in soft agar and we also test their carcinogenic properties by orthotopic injections of 500 selected cells in 11 mice. After a DNA extraction on selected populations, a differential genotyping analysis has been made with Affymetrix Genome-Wide Human SNP Array 6.0. To verify the expression of the genes identified, Western blots had been made. Our results have demonstrated that CD133high population presented TICs properties in vitro and in vivo. The differential genotyping analysis allowed identifying two gains common regions (16p13.3 and 19p13.3) in CD133high population and two others loss of heterozygosity (LOH) (16q12.1 and 21q21.3) in CD133low population . No losses were observed. Among the genes studied, ephrin-A2 protein expression was correlated to CD133 expression in 6 NB tumors and 2 NB cell lines. Also, ephrin-A2’s increased concentration influenced the neurospheres by decreasing their size. Thereby, CD133high population, which had TICs properties, possess different genotyping characteristics compared to CD133low population. The presence of ephrine-A2 in cells expressing CD133 emphasizes its importance in the development of TICs. These results suggest the presence of potential target for new therapies targeting the TICs demonstrated by the genomic study.
27

O papel da quinase Aurora A na biologia das células iniciadoras de turmor pulmonares com mutação em KRAS / The role of Aurora A kinase in the biology of lung tumor initiating cells with KRAS mutations

Luiza Coimbra Scalabrini 06 December 2016 (has links)
Mutações ativadoras no gene KRAS são prevalentes em cancer de pulmão e a as vias de sinalização de RAS estão aumentadas em células iniciadoras de tumor (CITs), que são definidas como células autorrenováveis capazes de iniciar a formação tumoral, sustentar o crescimento tumoral e promover a disseminação tumoral. Entretanto, terapias direcionadas a RAS não foram efetivas até hoje e a identificação de alvos de KRAS que contribuam para o fenótipo oncogênico é necessária. Como a quinase Aurora A (AURKA) já foi implicada, tanto na oncogênese induzida por KRAS, quanto em promover a função das CITs, nós hipotetizamos que a inibição das vias de AURKA seria detrimental para a função de CITs pulmonares portadoras de KRAS oncogênica, desta forma diminuindo o comportamento maligno do câncer de pulmão. Para avaliar a função das CITs, nós usamos ensaios de crescimento de tumoresferas que permitem o crescimento seletivo de CITs in vitro. As linhagens pulmonares positivas para KRAS H358 e A549 formaram tumoresferas em cultura de baixa aderência e, quando comparadas às linhagens parentais, às células oriundas de tumoresferas apresentaram maior capacidade clonogênica in vitro e maior tumorigenicidade in vivo. Além disso, uma análise por qPCR revelou que as células oriundas de tumoresferas possuem expressão aumentada de fatores de células tronco, uma característica de CITs. Em seguida, nós inibimos a AURKA nas linhagens pulmonares positivas para KRAS H358 e A549 por interferência de RNA (RNAi) ou com um inibidor das quinases Aurora (AI II). A inibição de AURKA diminuiu a formação de tumoresferas e o crescimento destas em culturas seriadas, além de reduzir a capacidade clonogênica das células oriundas de tumoresferas. Estes resultados indicam que a AURKA é importante para a autorrenovação e a oncogenicidade de CITs, e que a AURKA induz o fenótipo tronco-tumoral, o que é corroborado pelo achado de que a inibição de AURKA nas tumoresferas reduz a expressão de fatores de célula tronco. Um destes fatores regulados por AURKA é o marcador de superfície de célula tronco CD24. De fato, quando comparadas às células cultivadas de forma aderente, as células oriundas de tumoresferas apresentam maior número de células positivas para CD24 (CD24+) e estes números são reduzidos pelo tratamento com AI II. Finalmente, nós purificamos células H358 CD24+ por citometria de fluxo e mostramos que, quando comparadas às células negativas para CD24, as células CD24+ apresentam maior capacidade de formar tumoresferas em culturas seriadas, e o tratamento com AI II inibe preferencialmente a capacidade de células CD24+ de formarem tumoresferas. Nossos resultados sugerem que uma terapia baseada na inibição de AURKA pode reduzir o número e função de CITs pulmonares portadoras de KRAS oncogênica e, portanto, pode representar uma estratégia terapêutica atraente para reduzir a recidiva e metástase no câncer de pulmão induzido por KRAS. / Activating mutations in KRAS are prevalent in lung cancer and RAS sinaling is enhanced in cancer initiating cells (CICs), which are defined as self-renewing tumor cells able to initiate tumor formation, sustain tumor growth and drive tumor dissemination. However, therapies targeted to oncogenic RAS have been ineffective to date and identification of KRAS targets that impinge on the oncogenic phenotype is warranted. Because Aurora kinase A (AURKA) has been implicated both in RAS oncogenesis and in promoting CIC function, we hypothesized that targeting AURKA pathways would impair KRAS-positive lung CIC function, thereby decreasing lung cancer malignant behavior. To evaluate CIC function, we used tumorsphere assays that allow selective growth of CICs in vitro. KRAS positive lung cancer H358 and A549 cells formed tumorspheres under low attachment conditions, and, when compared to the parental cell lines, sphere-forming cells had increased clonogenic ability in vitro and increased tumorigenicity in vivo. In addition, qPCR analysis revealed that tumorsphere cells displayed increased expression of stem cell factors, a hallmark of CICs. Next, we targeted AURKA in KRAS positive lung cancer H358 and A549 cells by RNA interference (RNAi) or with an Aurora inhibitor (AI II). AURKA targeting decreased tumorsphere formation and growth in serial cultures and reduced clonogenic growth of tumorsphere-forming cells. These results indicate that AURKA is important for CIC selfrenewal and oncogenicity and that AURKA induces a CIC phenotype, which is further underscored by the finding that AURKA targeting in tumorspheres decreases expression of stem cell factors. One such factor shown to be regulated by AURKA is the stem cell surface marker CD24. In fact, when compared to adherent cultures, A549 and H358 tumorspheres display increased numbers of CD24-positive (CD24+) cells and these numbers are reduced by AI II treatment. Finally we purified H358 CD24+cells by flow cytometry and showed that, when compared to CD24-negative cells, CD24+ cells have increased ability to form tumorspheres in serial cultures, and AI II treatment preferentially reduced the ability of CD24+ cells to form tumorspheres. Our results suggest that AURKA inhibition therapy can reduce the number and function of KRAS-positive lung CICs, and, therefore might be an attractive therapeutic strategy to reduce recurrence and metastasis in KRAS-induced lung cancer.
28

Rôle du facteur de croissance IGF-1 (Insulin-Like Growth Factor-1) sur le caractère souche du mélanome métastatique : vers une nouvelle cible thérapeutique contre la dissémination et la résistance aux traitements / Role of IGF-1 (Insulin-Like Growth Factor-1) in the Metastatic Melanoma Stem Character : Towards a New Therapeutic Target Against the Spread and Treatment Resistance

Le Coz, Vincent 14 October 2016 (has links)
Le mélanome métastatique représente le plus mortel des cancers cutanés par sa forte résistance aux thérapies conventionnelles. Les cellules initiatrices de tumeurs (CIT) sont présentes dans de nombreux cancers dont le mélanome. Ces cellules, capables de s’autorenouveller, sont à l’origine de la récidive tumorale et des métastases représentant une cible pour le développement de nouveaux traitements. Les CIT sont confinées dans un microenvironnement tumoral dans lequel des facteurs sécrétés tels que l'Insulin-Like Growth Factor-1 (IGF-1) et le Transforming growth factor (TGF-β) favorisent la transition épithéliomésenchymateuse (TEM), un processus clef lié à l’émergence des CIT. En utilisant des cellules de mélanome métastatique, nous avons montré qu’une inhibition d’IGF-1 induit une diminution de la tumorigénicité des cellules en diminuant la capacité des B16-F10 à former des métastases pulmonaires. Outre son action sur la prolifération cellulaire, IGF-1 est impliqué dans le processus de TEM favorisant les propriétés migratoires et invasives des cellules B16-F10. Par ailleurs, IGF-1 joue un rôle majeur dans le maintien des CIT expliquant la forte résistance des mélanomes aux thérapies conventionnelles. Des expériences préliminaires suggèrent que ces activités induites par IGF-1 pourraient être médiées en partie par le facteur TGF-β, un facteur clef de la TEM. D'autres résultats confortent cette hypothèse en montrant une implication directe du TGF-β dans le caractère souche des cellules B16-F10. Ces travaux montrent que l’inhibition de la voie IGF-1/IGF-1R dans le microenvironnement tumoral pourrait être une bonne stratégie pour le développement de traitements anti-tumoraux contre le mélanome. / Metastatic melanoma is arguably the most virulent among human cancers, owing to its propensity to metastasize, and its resistance to conventional therapies. Like in many other cancers, tumor stem cells or tumor initiating cells (TIC), have been identified in melanoma. These cells have the unique ability to self-sustain and renew the tumor and thus represent an interesting target for the development of new therapeutic strategies. TIC are nested in a confined microenvironment where secreted-factors such as Insulin-Like Growth Factor- 1 (IGF-1) and transforming growth factor (TGF-β) promote epithelialmesenchymal transition (EMT), a key process in stemness features acquisition. In this context, we investigated the effects IGF-1 on TIC behavior. Using B16-F10 metastatic melanoma cell line, we show that IGF-1 downregulation curbs lung metastasis suggesting that IGF-1 plays a direct role in the intrinsic tumorigenic potential of these cells.markers associated with an increased expression of the epithelial marker E-cadherin and of the major regulator of melanocyte differentiation MITF. Most importantly, IGF-1 inhibition sharply decreased stemness features, reducing the expression of key stem markers and functional characteristics of MIC. This was associated with an important sensitivity to mitoxantrone treatment. Interestingly, our preliminary data suggest the EMT key component, TGF-β, conveys IGF-1-mediated effects. Indeed, TGF-β directly affects B16-F10 stemness phenotype and markers. In summary, we show that the IGF-1/IGF-1R nexus represents an interesting target for the development of novel therapeutic strategies against metastatic melanoma.
29

Prognostic Impact of the CD34+/CD38- Cell Burden in Patients with Acute Myeloid Leukemia receiving Allogeneic Stem Cell Transplantation

Jentzsch, Barbara Madlen 02 February 2018 (has links)
Introduction: In acute myeloid leukemia (AML), leukemia initiating cells exist within the CD34+/CD38- cell compartment. They are assumed to be more resistant to chemotherapy, enriched in minimal residual disease cell populations, and responsible for relapse. Purpose: We evaluated clinical and biological associations and the prognostic impact of a high diagnostic CD34+/CD38- cell burden in AML patients receiving an allogeneic stem cell transplantation (HSCT) in complete remission. Here, the therapeutic approach is mainly based on immunological graft-versus-leukemia effects. Methods: Percentage of bone marrow CD34+/CD38- cell burden in 169 AML patients at diagnosis was measured using flow cytometry. The optimal cutoff of 6% was applied and used to evaluate the impact of a high CD34+/CD38- cell burden on outcome. Results: The CD34+/CD38- cell burden and was highly variable (median 0.5%, range 0-89% of all mononuclear cells). A high CD34+/CD38- cell burden at diagnosis associated with worse genetic risk and secondary AML. Patients with a high CD34+/CD38- cell burden had shorter relapse-free and overall survival, which may be mediated by residual leukemia initiating cells in the CD34+/CD38- cell population, escaping the graft-versus-leukemia effect after allogeneic HSCT. Conclusion: Evaluating the CD34+/CD38- cell burden at diagnosis may help to identify patients at high risk of relapse after allogeneic HSCT. Further studies to understand leukemia initiating cell biology and develop targeting therapies to improve outcomes of AML patients are needed.:Bibliographische Beschreibung / Bibliographic description 1 Einleitung / Introduction 2 Epidemiology and AML diagnosis 2 Therapeutic options in AML 3 Genetic risk classification for therapeutic decisions in AML 6 Immunophenotyping in AML 10 Leukemia Initiating Cells 11 Objectives of the here presented study 13 Publikation / Publication 14 Anlage / Supplemental Material 23 Zusammenfassung / Summary 48 Weiterführende Arbeiten / Future developments GPR56 as new LIC marker 52 Referenzen / References 55 Referenz der Publikation / Reference of the publication 60 Erklärung über die eigenständige Abfassung der Arbeit 61 Curriculum Vitae 62 Komplette Publikationsliste 65 Danksagung 74
30

The Characterization and Therapeutic Targeting of CD133 in Human Glioblastoma

Salim, Sabra January 2021 (has links)
CD133, a pentaspan glycoprotein, has long been known to represent aggressive, stem-like populations across various human malignancies. While its expression correlates with numerous clinical outcomes including disease progression, metastasis, recurrence, and poor overall survival in numerous cancers, little is currently known about its function. In the brain cancer glioblastoma (GBM), CD133-expressing cells have previously been shown to initiate tumours, evade therapy and interestingly, self-renew, a key property of cancer stem cells. With an implied signalling role in driving self-renewal, we aim to elucidate the role of CD133 in glioblastoma. To understand the role of CD133, we aim to study its protein-protein interactions using the proximity-dependent labelling technique known as miniTurboID. By tagging proteins of interest with a promiscuous biotin ligase at both protein termini, potential interactors can be biotinylated and identified by subsequent mass spectrometry. While miniTurboID has traditionally been performed by synthetic transgenes expressing the tagged proteins of interest in commercial cell lines, overexpression may not recapitulate its native function. Thus, using CRISPR technology, we aim to insert the miniTurboID ligase at both the N- and C-terminus of CD133 in patient-derived human GBM lines. Although little is currently known about CD133 function, development of targeted therapies has presented a promising strategy in pre-clinical studies. In the Singh Lab, we previously developed a chimeric antigen receptor T-cell, or CAR-T, comprised of a T-cell expressing a synthetic receptor capable of recognizing a tumor-associated antigen and activating cytolytic-killing directed towards the target cell. Currently, CAR-T therapies are autologous, or patient-derived, in nature which may host a myriad of concerns including patient-specific qualitative and quantitative T-cell dysfunction, inconsistent generation of CAR products, and availability to rapidly progressing patients. To circumvent this concern, “off-the-shelf”, donor-derived or allogeneic CAR-T products may be generated for use in GBM patients. However, in addition to CAR integration, allogeneic products must be additionally modified to eradicate expression of the endogenous TCR, as this would induce a phenomenon known as graft versus host disease, in which healthy tissues are targeted. Thus, in this thesis, we show gene editing potential in human GBMs to perform an endogenous genomic knock-in of miniTurboID. With the identification of interacting proteins, defining the subsequent functionality of CD133 may elucidate oncogenic cellular programs, and highlight common nodes of interaction within divergent cell signaling pathways. To develop an allogeneic CAR-T product, we designed a two-step approach in which the CAR sequence was integrated into the TCR gene for simultaneous knock-out. We later show early pre-clinical efficacy in comparison to traditional autologous CAR-T in our patient-derived models of human GBM. Thus, by using CD133 as a centralizing concept in this thesis, we ultimately hope to develop our biological understanding of CD133, while testing the therapeutic development of a donor-derived CAR-T therapy. / Thesis / Master of Science (MSc) / Glioblastoma (GBM) is one of the most common malignant brain tumors in adults. Despite an aggressive therapy regimen, almost all patients relapse 7-9 months post-diagnosis. Therapy failure and poor patient outcome may be attributed to a small population of cells known as glioblastoma stem cells, or GSCs, that are able to escape therapy and seed disease recurrence. GSCs are most notably identified by the cell surface protein CD133, which has previously been shown to associate with pro-tumor properties including treatment resistance, tumor growth, maintenance, progression and metastasis. While expression of CD133 in cancer has been heavily characterized, little is currently known about its function. One such avenue to understand its mechanism of action in cancer, and more particularly GBM, is to define its interactions with other proteins. Protein-protein interactions play a pivotal part as the backbone of signalling pathways that drive tumor development and growth. Therefore, defining and mapping the CD133 interaction network may help us understand how this protein governs regulation of GSCs, and ultimately, GBM progression. While the biology of CD133 has yet to be elucidated, targeting CD133 on GSCs has presented a promising therapeutic strategy for patients with GBM. Previously in the Singh Lab, we developed an engineered T-cell therapy, known as a CAR-T, that can recognize CD133 to induce tumor cell death. While this showed success in our animal models of human GBM, other considerations must be addressed on its path to clinical development. As of current, CAR-T therapies are generated from T-cells taken from cancer patients. This hosts a myriad of concerns including the quality of patient T-cells, the time and cost to manufacture, and its availability for patients with rapidly progressing disease. To circumvent this issue, donor-derived CAR-T cells can be genetically engineered for safe usage in GBM patients as a readily available, “off-the-shelf” therapy. To define the function of CD133, we have attempted to use a technique known as BioID, which tags the protein of interest with a smaller biotin ligase. This biotin ligase can subsequently tag proteins that come within the vicinity of CD133, that may later be identified by sequencing as potential interactors. As current use of BioID may not reliably mimic the interaction of CD133, we sought to genetically engineer human GBM lines with the BioID protein to more closely resemble tumor-relevant behaviours of CD133. To develop a donor-derived CAR-T therapy, we similarly used genetic engineering of T-cells to ensure specific targeting of tumor cells with CD133, while sparing healthy tissues. By using CD133 as a centralizing concept in this thesis, we ultimately hope to develop our biological understanding of CD133, while testing the therapeutic development of a donor-derived CAR-T therapy.

Page generated in 0.0902 seconds