• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prediktering och styrning av värmesystem i flerbostadshus : Utvärdering av egenutformad MPC-regulator / Prediction and control of heating systems in apartment buildings : Evaluation of self-designed MPC-controller

Beri, George January 2015 (has links)
År 2012 gick ca 30 % av den totala energianvändningen till uppvärmning av bostäder och lokaler. Av den utgör uppvärmning av flerbostadshus och lokaler 60 % (79,5 TWh). Det finns därmed stor potential att minska energianvändningen inom bostadssektorn. En del i effektiviseringsarbetet är att se över regleringen av utrustningen som styr uppvärmningssystemen i bostäderna. Dagens reglering innefattar oftast en styrning som är direkt kopplad till utomhustemperaturen. Denna form av reglering lämpar sig bäst till system där ändring av tillstånd kan ske fort. När det gäller bostäder med hög massa tar det däremot tid innan en ändring får effekt. I vissa fall kan trögheten vara bortåt ett dygn för bostäder med hög intern massa. Ett alternativt till dagens enkla metoder är den så kallade MPC-regulatorn som står för Model Predictive Control. MPC är en reglermetod som kan ta hänsyn till trögheten och dynamiken hos byggnader. MPC-regulatorn arbetar dessutom proaktiv snarare än retroaktivt vilket de flesta av dagens reglermetoder gör. Ett problem med MPC-regulatorn är att den kräver stora beräkningsresurser samt energiteknisk kunskap om byggnaden där den ska implementeras. Detta gör att den har haft svårt att slå igenom. Syftet med examensarbetet var därför att konstruera en enkel MPC-regulator och utvärdera dess funktion. Detta gjordes genom att konstruera en bänktestmodell som utvärderade funktionen av regulatorn. Utöver att konstruera en simpel MPC-regulator har en studie gjorts på hur den nuvarande reglermetoden kan energieffektiviseras utan att behöva investera i ny utrustning. Målet var att få en jämn inomhustemperatur och förbättra driftsekonomin för byggnaden som studerades. Studien har genomförts hos Karlstads Bostads Aktiebolag (KBAB) som förvaltar och äger 7300 lägenheter i Karlstad. Studien presenterar ett antal enkla MPC-regulatorer som kan användas för att uppnå jämnare inomhustemperatur och bättre driftsekonomi. Det bedöms dock att den MPC-regulatorn som endast tar hänsyn till utetemperaturen i sin prediktering är den mest lämpliga. MPC-regulatorn har potential att sänka värmebehovet med 3,12 MWh/år (-4 %) och minska inomhustemperaturens variationer med 96 %. Årsmedeltemperaturen skulle hamna på 21,1 °C och energiförbrukningen på 113 kWh/m2. Studien presenterar dessutom ett alternativ till dagens reglermetod som inte kräver några extra resurser eller investeringskostnader. Den har potential att sänka värmebehovet med 8,3 MWh/år (-10 %) och minska inomhustemperaturens variationer med 65 %. Energiförbrukningen skulle då bli 106 kWh/m2 för byggnaden. / In 2012, 30% of the total energy consumption was used by apartments and buildings. Heating of apartment buildings and commercial buildings represents 60% (79.5 TWh) of that energy consumption. There is thus great potential for reducing energy use in the residential sector. Part of the overall efficiency work is to review the control of heating systems. Today's control often involves simple on / off systems where an upper and lower limit controls when to start and stop a process. This form of control is therefore best suited to systems where the change of state occurs quickly. When it comes to homes with high mass however, it takes time before a change takes effect. In some cases, it can take up to 24h before a change is noticed for buildings with high thermal inertia. An alternative to the traditional temperature based control is the so-called MPC controller which stands for Model Predictive Control. MPC is a control method that can take into account the thermal inertia and the dynamics of buildings. MPC controller also controls the system proactive rather than retroactive, which is the technique most of current control methods use. One problem with the MPC controller thou is that it requires large computational resources and technical knowledge of the building where it will be implemented. The aim of the thesis was to design a simple MPC controller and evaluate its performance. This was done by constructing a bench test model that can evaluate the function of the MPC controller. In addition to constructing a simple MPC-controller, a study has been done on how the current control method can be more energy efficient without having to invest in new equipment. The goal was to reduce the variations in indoor temperature and improve operating economics of the building. The study was conducted at Karlstad Bostads Aktiebolag (KBAB) that owns and manages 7,300 apartments in Karlstad. The Bench test model calculated indoor temperature using the weather conditions as solar radiation, cloud cover, outside temperature and wind speed. The study presents a number of simple MPC controllers that can be used to minimize indoor temperature variations and improving operating economy. It is estimated, however, that the MPC controller that only takes into account the outside temperature in its prediction is the most appropriate. The MPC controller has the potential to reduce heating requirements by 3.12 MWh (-4%) and reduce indoor temperature variations with 96%. The mean annual temperature would be 21.1 ° C and the energy consumption 113 kWh/m2 for the building. The study also presents an alternative to current control method that does not require any additional resources or investments. It has the potential to reduce heating requirements by 8.3 MWh (10%) and reduce indoor temperature variations by 65%. The energy consumption would then be 106 kWh/m2.
2

Stommaterial för villor - trä eller betong?

Skoogh, Magnus, Hilding, Adrian January 2009 (has links)
<p><p>We have the tradition in Sweden to build villas and houses with a wooden framework. It has become natural for us because we have so much forest in our country. Building with wood has advantages, it is easy to process, but also disadvantages, as it is sensitive to moisture.</p><p>Finland has long made use of the thermal blocks to build villas. It is a type of bricks that are a bit like a sandwich element, with a core of EPS and concrete on both sides of the core material. The concrete is hollow, so that after the walls has been bricked up you pour concrete into the hollow bricks.</p><p>The issue of this report is to find out if concrete can be an alternative to wood as framework material in villas. To make the comparison, we have used us a reference house. We have a wall with a wooden framework with the same U-value as the thermal blocks to get a fair energy comparison.</p><p>One of the advantages of the thermal blocks is its relatively high heat storage capacity. The heat storage capacity makes the indoor temperature more even and you do not have to have as much effect on the heating system. You can also bring down the energy consumption because the concrete stores the free heat in the form of solar radiation, personal heat and heat from machines, which are then released when the room temperature is lower than the wall temperature. Another advantage is that the building becomes almost free of thermal bridges when building with thermal blocks. The only cold bridges you get are the ones around windows and doors. The wall of thermal blocks has a higher sounds reduction index and a higher fire class than the wall with a wooden framework.</p><p>Material costs for the heating blocks are almost twice as high as for a wall with a wooden framework with the same U-value. It is a disadvantage for the thermal blocks. By contrast, heating blocks, doesn’t take as long to build, which on our reference building reduces construction time by about 60 hours.</p><p>The energy to save thanks to the heat storage and the virtual absence of thermal bridges is approximately 1700kWh a year. There is not much energy, so it takes a long time to earn the extra amount it costs to build with the thermal blocks compared with wooden framework.</p><p>The motive to build with the thermal blocks is instead the high level of comfort you get. You get fewer hours with the upper and lower temperatures in the building and less disturbed by traffic noise and other noise from outside thanks to the higher sound reduction index.</p></p> / <p>Vi har som tradition i Sverige att bygga villor och småhus med träregelstomme. Det har blivit naturligt för oss, eftersom vi har så mycket skog i landet. Att bygga med trä har fördelar, som att det är lätt att bearbeta men också nackdelar, som att det är känsligt för fukt.</p><p>I Finland har man länge använt sig av värmeblock för att bygga villor. Det är en typ av mursten som är lite likt ett sandwichelement, med en kärna av EPS-cellplast och betong på båda sidorna om cellplasten. Betongen är ihålig, så att efter man har murat upp väggarna och dragit installationer gjuter man i hålrummen väggarna.</p><p>Frågeställningen i denna rapport är om betong kan vara ett alternativ till trä som stommaterial till villor. För att kunna göra jämförelsen har vi använt oss av ett referenshus. Vi har tagit fram en vägg med träregelstomme med samma U-värde som värmeblocken för att få en rättvis energijämförelse.</p><p>En av fördelarna med värmeblocken är dess relativt höga värmelagringsförmåga. Värmelagringsförmågan gör att man får en jämnare inomhustemperatur och man behöver inte ha så hög effekt på värmeanläggningen. Man kan också få ner energiförbrukningen genom att betongen lagrar gratisvärme i form av solinstrålning, personvärme och värme från maskiner, som sedan avges när rumstemperaturen blir lägre än väggens temperatur. Ytterligare en fördel är att man blir nästan helt utan köldbryggor när man bygger med värmeblocken. De enda köldbryggor man får är runt fönster och dörrar. Man har en högre brandklass och en högre luftljudsisolering på väggen av värmeblocken än på träregelväggen.</p><p>Materialkostnaderna för värmeblocken är nästan dubbelt så hög som för en träregelvägg med samma U-värde. Det är det som talar emot dessa. Däremot har värmeblocken en lite lägre enhetstid, som på vår referensbyggnad kortar ner byggtiden med ca 60 timmar.</p><p>Den energibesparing man gör tack vare värmelagringen och de nästan obefintliga köldbryggorna är ungefär 1700kWh om året. Det är inte så stor energibesparing, så det tar lång tid innan man tjänar in den extra summa det kostar att bygga med värmeblock jämfört med träregelstomme.</p><p>Motivet för att bygga med värmeblocken är istället den höga komfort man får. Man får färre timmar med över- och undertemperaturer i byggnaden och man störs mindre av trafikbuller och annat buller utifrån tack vare den högre luftljudsisoleringen.</p>
3

Energisimuleringar av trapphus / Energisimuleringar av trapphus

Lampa, Jessika January 2019 (has links)
Ett varmt trapphus tyder på att det sker oavsiktligt värmeläckage någonstans i byggnaden. Det är av vikt att ta reda på orsaken till värmeläckaget för att kunna minska energiförluster. I Lindbäcks flervåningshus finns trapphus som är för varma än vad de är tänkt att vara. I den här studien undersöks en av byggnaderna med ett varmt trapphus som jämförs med en byggnad med ett trapphus i normal temperatur. Studien har genomförts i simuleringsverktyget IDA ICE. Data har samlats in för byggnadernas utformning, materialinnehåll och installationer. Byggnaderna har modellerats upp i simuleringsverktyget och tillförts brukarbeteenden enligt de rekommendationer som finns för energiberäkningar. Olika parametrar har studerats och analyserats i simuleringsmiljön utifrån byggnadernas befintliga utförande. Resultaten från simuleringarna visar vad de boende i byggnaderna upplever. Byggnaden med ett varmt trapphus visar upp emot 30 grader året runt i simuleringsmodellen av befintligt utförande. Parameterstudien visar att det finns åtgärder som kan påverka det termiska klimatet i positiv riktning. Simuleringar visar att värmeförluster från dåligt isolerade varmvattenledningar är en betydande orsak till temperaturökningarna i trapphusen. Genom att isolera varmvattenledningarna kan medeltemperaturen för alla våningsplan sjunka med 2,7 grader i ett snitt över hela året. Det kan däremot vara problematiskt att isolera vissa ledningar i byggsystemet eftersom de är svåra att komma åt. Genom att använda böjbar rörisolering skulle förbättringar i den termiska komforten kunna upplevas. / A warm stairwell indicates that accidental heat leakage occurs somewhere in the building. It is important to find out the cause of the heat leakage in order to reduce energy losses. In Lindbäck's multi-storey houses there are stairwells that are too hot than they are supposed to be. In this study, one of the buildings with a warm stairwell is analysed and is compared with a building with a stairwell in normal indoor temperature. The study has been carried out in the simulation tool IDA ICE. Data has been collected for the design of the buildings, material content and installations. The buildings have been modelled in the simulation tool and added user behaviours according to the recommendations for energy calculations. Various parameters have been studied and analysed in the simulation environment based on the existing construction of the buildings. The results from the simulations show what the residents in the buildings are experiencing. The building with a warm stairwell indicates up to 30 degrees all year round in the simulation model of the existing design. The parameter study shows that there are measures that can affect the thermal climate in a positive direction. Simulations show that heat losses from poorly insulated hot water pipes are a major cause of the hot temperatures in the stairwells. By isolating the hot water pipes, the average temperature for all floors can fall by 2.7 degrees in an average throughout the year. However, it may be problematic to isolate certain pipes in the building system because they are difficult to access. By using flexible pipe insulation, improvements in the thermal comfort could be experienced.
4

Stommaterial för villor - trä eller betong?

Skoogh, Magnus, Hilding, Adrian January 2009 (has links)
We have the tradition in Sweden to build villas and houses with a wooden framework. It has become natural for us because we have so much forest in our country. Building with wood has advantages, it is easy to process, but also disadvantages, as it is sensitive to moisture. Finland has long made use of the thermal blocks to build villas. It is a type of bricks that are a bit like a sandwich element, with a core of EPS and concrete on both sides of the core material. The concrete is hollow, so that after the walls has been bricked up you pour concrete into the hollow bricks. The issue of this report is to find out if concrete can be an alternative to wood as framework material in villas. To make the comparison, we have used us a reference house. We have a wall with a wooden framework with the same U-value as the thermal blocks to get a fair energy comparison. One of the advantages of the thermal blocks is its relatively high heat storage capacity. The heat storage capacity makes the indoor temperature more even and you do not have to have as much effect on the heating system. You can also bring down the energy consumption because the concrete stores the free heat in the form of solar radiation, personal heat and heat from machines, which are then released when the room temperature is lower than the wall temperature. Another advantage is that the building becomes almost free of thermal bridges when building with thermal blocks. The only cold bridges you get are the ones around windows and doors. The wall of thermal blocks has a higher sounds reduction index and a higher fire class than the wall with a wooden framework. Material costs for the heating blocks are almost twice as high as for a wall with a wooden framework with the same U-value. It is a disadvantage for the thermal blocks. By contrast, heating blocks, doesn’t take as long to build, which on our reference building reduces construction time by about 60 hours. The energy to save thanks to the heat storage and the virtual absence of thermal bridges is approximately 1700kWh a year. There is not much energy, so it takes a long time to earn the extra amount it costs to build with the thermal blocks compared with wooden framework. The motive to build with the thermal blocks is instead the high level of comfort you get. You get fewer hours with the upper and lower temperatures in the building and less disturbed by traffic noise and other noise from outside thanks to the higher sound reduction index. / Vi har som tradition i Sverige att bygga villor och småhus med träregelstomme. Det har blivit naturligt för oss, eftersom vi har så mycket skog i landet. Att bygga med trä har fördelar, som att det är lätt att bearbeta men också nackdelar, som att det är känsligt för fukt. I Finland har man länge använt sig av värmeblock för att bygga villor. Det är en typ av mursten som är lite likt ett sandwichelement, med en kärna av EPS-cellplast och betong på båda sidorna om cellplasten. Betongen är ihålig, så att efter man har murat upp väggarna och dragit installationer gjuter man i hålrummen väggarna. Frågeställningen i denna rapport är om betong kan vara ett alternativ till trä som stommaterial till villor. För att kunna göra jämförelsen har vi använt oss av ett referenshus. Vi har tagit fram en vägg med träregelstomme med samma U-värde som värmeblocken för att få en rättvis energijämförelse. En av fördelarna med värmeblocken är dess relativt höga värmelagringsförmåga. Värmelagringsförmågan gör att man får en jämnare inomhustemperatur och man behöver inte ha så hög effekt på värmeanläggningen. Man kan också få ner energiförbrukningen genom att betongen lagrar gratisvärme i form av solinstrålning, personvärme och värme från maskiner, som sedan avges när rumstemperaturen blir lägre än väggens temperatur. Ytterligare en fördel är att man blir nästan helt utan köldbryggor när man bygger med värmeblocken. De enda köldbryggor man får är runt fönster och dörrar. Man har en högre brandklass och en högre luftljudsisolering på väggen av värmeblocken än på träregelväggen. Materialkostnaderna för värmeblocken är nästan dubbelt så hög som för en träregelvägg med samma U-värde. Det är det som talar emot dessa. Däremot har värmeblocken en lite lägre enhetstid, som på vår referensbyggnad kortar ner byggtiden med ca 60 timmar. Den energibesparing man gör tack vare värmelagringen och de nästan obefintliga köldbryggorna är ungefär 1700kWh om året. Det är inte så stor energibesparing, så det tar lång tid innan man tjänar in den extra summa det kostar att bygga med värmeblock jämfört med träregelstomme. Motivet för att bygga med värmeblocken är istället den höga komfort man får. Man får färre timmar med över- och undertemperaturer i byggnaden och man störs mindre av trafikbuller och annat buller utifrån tack vare den högre luftljudsisoleringen.

Page generated in 0.0635 seconds