Spelling suggestions: "subject:"inquirybased laboratory"" "subject:"enquirybased laboratory""
1 |
The influence of teacher professional identity on inquiry-based laboratory work in school chemistryTsakeni, Maria January 2015 (has links)
Amidst calls to incorporate inquiry meaningfully into the practice of laboratory work in secondary school chemistry and calls to investigate how teachers negotiate their professional identities under widespread reforms in education, this study sought to explore the interface of teacher professional identity and how teachers facilitate inquiry for learners during practical activities. Utilising a social constructivist lens and a qualitative case study approach, the study focused on three inquiry actions; namely, question posing, experiment procedure design and articulation of solutions through a teacher identity lens. Data capture comprised a mix of semi-structured interviews, focus group interviews, observations, field notes and a research journal. Data was analysed utilising the content analysis method.
Findings were fourfold. First, teachers displayed four identity positions in Inquiry-based Laboratory work, which was interwoven with their professional training, personal school experiences, beliefs and attitudes and sense of agency. Second, teachers’ professional identity influenced how they engaged learners in question posing, experiment design procedure and giving solutions as inquiry actions. Third, teachers held strong beliefs in chemistry as a two-pronged subject and utilised laboratory work to consolidate and develop learner understanding of scientific concepts and theories. And fourth the manner in which teachers facilitated inquiry in the chemistry laboratory manifested as an interface between teacher professional identity and the principles of IBLW. / Thesis (PhD--University of Pretoria, 2015. / Science, Mathematics and Technology Education / Unrestricted
|
2 |
Lärares syn på öppna laborationer i kemiundervisningen / Teachers view on inquiry laboratory practices in chemistry educationIsraelsson, Stina January 2017 (has links)
Ett övergripande examensmål för naturvetenskapsprogrammet är att eleverna ska utveckla ett naturvetenskapligt förhållningssätt enligt gällande läroplan. Detta innefattar ”förmåga till kritiskt tänkande, logiska resonemang, problemlösning och systematiska iakttagelser” (Lgy11). Öppna laborationer är en undervisningsform som syftar till utvecklandet av dessa förmågor och som därför rekommenderas av Skolverket. Men hur ser kemilärare på öppna laborationer och deras användbarhet i undervisningen? Vad använder de sig av för stöd och hjälp när de ska planera undervisning genom öppna laborationer utifrån läroplanen? Denna studie syftar till att ur ett läroplansteoretiskt perspektiv utforska gymnasielärares tankar kring hur det är att använda öppna laborationer I kemiundervisningen på gymnasiet. Tre lärare som vid studiens genomförande använde sig av öppna laborationer i sin undervisning intervjuades. Dessutom undersöktes två webbaserade kemilärarresurser med avseende på vilken typ av stöd gällande öppna laborationer de erbjöd, i vilken utsträckning och på vilket sätt. Studien visar på att lärarnas övergripande syfte med öppna laborationer var att få eleverna att tänka, vilket speglar hur öppna laborationer syftar till att ge elever möjlighet att utveckla ett naturvetenskapligt förhållningssätt. Vid planerande av öppna laborationer i undervisningen litar lärarna i studien huvudsakligen på egen beprövad erfarenhet. Dessutom pekar studien på att inte bara konkreta ramfaktorer, såsom undervisningstid och grupper inverkar på lärarnas planering, utan också det ”undervisningsklimat” som råder på skolan i allmänhet. / A main objective according to the Swedish national curriculum of the science program in upper secondary school is for the students to develop the ability of scientific reasoning. This includes the abilities of chritical thinking, logical reasoning, problemsolving and systematic observations. The objective of open laboratory practices (inquiry-based laboratory) teaching pedagogics is for the students to develop their scientific reasoning skills. Thus, such pedagogical methods are recommended by Skolverket. But what do teachers think about inquiry-based laboratory practices and its application in class? What kind of support do they have when, according to the curriculum, including inquiry-based laboratory practices in their chemistry classes? This study aims to explore teachers view on using inquiry-based laboratory practices in chemistry class, from a curriculum theory perspective. Three teachers, who were using inquiry laboratory pedagogics at the time of the study, were interviewed. Two online resourses for chemistry teachers were also investigated regarding what type of information and support they contained regarding inquiry-based laboratory teaching material. What type of material and to what extent was it available? This study shows that the teachers’ main goal with inquiry-based laboratory practices was to make the students think, mirroring how the pedagogic of inquiry-based laboratory practices aims to develop students scientific reasoning. Teachers mainly rely on their own experience when planning inquiry-based laboratory practices. Additionally, this study also suggests that not only framing factors such as time and group size influence on how teachers plan their open laboratory classes, also the teaching and learning climate of the school in general influences how the teachers open up the laboratory practices towards inquiry.
|
3 |
Projeto, construção e avaliação de um termômetro eletrônico com aquisição automática de dados e aplicações no ensino de físico-química experimentalHirdes, Adriane Röedel 24 July 2015 (has links)
Submitted by Andrea Pereira (andrea.pereira@unipampa.edu.br) on 2017-03-13T17:30:03Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertacao_Adriane_Hirdes.pdf: 3848000 bytes, checksum: 348043b553a30ed8d618cbdbf91a99d3 (MD5) / Approved for entry into archive by Andrea Pereira (andrea.pereira@unipampa.edu.br) on 2017-03-13T17:30:23Z (GMT) No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertacao_Adriane_Hirdes.pdf: 3848000 bytes, checksum: 348043b553a30ed8d618cbdbf91a99d3 (MD5) / Made available in DSpace on 2017-03-13T17:30:23Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertacao_Adriane_Hirdes.pdf: 3848000 bytes, checksum: 348043b553a30ed8d618cbdbf91a99d3 (MD5)
Previous issue date: 2015-07-24 / Este estudo se insere no âmbito do ensino superior de química por meio do laboratório investigativo com o uso de projetos abertos de equipamentos para aquisição automática de dados. O estudo tem como objetivo projetar, construir e avaliar um instrumento de medida de temperatura com aquisição automática de dados utilizando um transdutor do tipo termistor e sua aplicação em atividades experimentais investigativas de físicoquímica. O estudo teve como objetivos o projeto, desenvolvimento e avaliação de um termômetro eletrônico com termistor para aquisição automática de dados de temperatura em tempo real, e o seu uso em atividades práticas experimentais. O projeto do termômetro eletrônico incluiu um transdutor de temperatura do tipo termistor, um circuito de condicionamento de sinal, a plataforma Arduino e uma planilha para o Excel que permite apresentar os dados numéricos e atualizar a representação gráfica em tempo real da temperatura em função do tempo. Os resultados obtidos indicam que o termômetro construído apresentou erro de medição de 0,07 oC na faixa de -10 oC a 100 oC. Esse instrumento foi utilizado como recurso para viabilizar o planejamento e implementação de práticas experimentais investigativas de físico-química experimental. As atividades envolveram a determinação de entalpia de reação de decomposição do peróxido de hidrogênio e o levantamento da curva de resfriamento do ácido esteárico (atividade de termometria). A organização da atividade experimental de termometria seguiu o modelo de argumentação de Lawson, e foi elaborado em três momentos: predição, experimentação e verificação. Nessa atividade, o momento da experimentação seguiu o modelo de laboratório aberto. Os objetivos de aprendizagem das atividades foram organizados em níveis de cognição de acordo com a Taxonomia de Bloom revisada de Objetivos Educacionais. A implementação ocorreu com uma turma de acadêmicos de Físico-Química Experimental I no 1o semestre de 2015, nos meses de março e abril, de uma universidade pública do interior do estado do Rio Grande do Sul. Os instrumentos de coleta de dados foram guias de atividades práticas experimentais utilizados pelos participantes durante a implementação das atividades, um teste de conhecimentos de múltipla escolha e um teste de motivação para aprender, aplicados antes e após a implementação, e as observações da professora pesquisadora. O teste de conhecimento foi analisado avaliando sua fidedignidade e índices de dificuldade e discriminação de cada item. Testes de hipóteses não-paramétricos de Wilcoxon pareado unilateral indicam uma melhoria no desempenho dos participantes no teste de conhecimento (valor-p=0,009) e no teste de motivação para aprender (valor-p=0,006). A análise das respostas dos participantes aos guias de atividades envolveu a categorização dos itens dos guias em níveis de cognição proposto por Zoller. Itens com nível LOCS de desenvolvimento cognitivo foi contemplado por grande parte dos participantes, enquanto o nível HOCS, relacionado ao desenvolvimento de hipóteses, não foi atingido por qualquer participante. O protótipo do termômetro eletrônico com aquisição de dados e as atividades experimentais de termometria e calorimetria constituem produtos educacionais resultantes do presente estudo, e poderão ser utilizados e/ou modificados para atender às necessidades do planejamento didático do professor. / This study falls within the scope of undergraduate chemistry teaching through inquirybased laboratory using open projects of automatic data acquisition systems. This work studied a thermistor-based temperature-measuring instrument with automatic data acquisition and applications in investigative experimental activities in physical chemistry. The study aimed to the design, development and evaluation of an electronic thermometer with thermistor for automatic acquisition of temperature data in real time and its use in experimental practice activities. The project of the electronic thermometer includes a thermistor type temperature transducer, a signal conditioning circuit, an Arduino platform and an Excel spreadsheet for real-time data representation of temperature versus time data. The results indicate that the thermometer built has a measurement uncertainty of 0,07 °C in the range of -10 °C to 100 °C. This instrument was used as a resource to facilitate the planning and implementation of investigative experimental practices of experimental physical chemistry. The activities involved the determination of enthalpy of decomposition of hydrogen peroxide and the cooling curve of stearic acid (thermometry activity). The organization of thermometry experimental activity followed the pattern of Lawson's argumentation, and was developed in three phases: prediction, experimentation and verification. The experimentation phase followed the open laboratory model. The learning objectives of the activities were organized in cognition levels in accordance with the Revised Bloom's Taxonomy of Educational Objectives. The implementation took place with a group of Experimental Physical Chemistry I students in the first semester of 2015, in March and April, at a public university in the state of Rio Grande do Sul. The data collection instruments were the guides for experimental practical activities used by the participants during the implementation of activities, a multiplechoice test of knowledge and a test for motivation to learn, applied before and after implementation, and the observations of teacher researcher. The knowledge test was analyzed evaluating their reliability and levels of difficulty and discrimination of each item. Non-parametric Wilcoxon signed-rank tests indicate an improvement in the performance of participants for knowledge test (p-value=0,009) and motivation to learn (pvalue = 0,006). The analyses of participants’ responses to activity guides were carried out categorizing items of the guides in cognitive levels proposed by Zoller. Items with cognitive development LOCS level was reached by most of the participants, while the HOCS level, related to the development of hypotheses, was not reached by any participant. The prototype of the electronic thermometer with data acquisition and the experimental activities of thermometry and calorimetry are educational products resulting from this study, and may be used and/or modified to meet the needs of the didactic planning of the chemistry teacher.
|
Page generated in 0.0676 seconds