• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 31
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Impact Of Dynamical Core And Diurnal Atmosphere Occean Coupling On Simulation Of Tropical Rainfall In CAM 3.1, AGCM

Kumar, Suvarchal 04 1900 (has links)
In first part of the study we discuss impact of dynamical core in simulation of tropical rainfall. Over years many new dynamical cores have been developed for atmospheric models to increase efficiency and reduce numerical errors. CAM3.1 gives an opportunity to study the impact of the dynamical core on simulations with its three dynamical cores namely Eulerian spectral(EUL) , Semilagrangian dynamics(SLD) and Finite volume(FV) coupled to a single parametrization package. A past study has compared dynamical cores of CAM3 in terms on tracer transport and has showed advantages using FV in terms of tracer transport. In this study we compare the dynamical cores in climate simulations and at their optimal configuration, which is the intended use of the model. The model is forced with AMIP type SST and rainfall over seasonal, interannual scales is compared. The significant differences in simulation of seasonal mean exist over tropics and over monsoon regions with observations and among dynamical cores. The differences among EUL and SLD, which use spectral transform methods are lesser compared that of with FV clearly indicating role of numerics in differences. There exist major errors in simulation of seasonal cycle in all dynamical cores and errors in simulation of seasonal means over many regions are associated with errors in simulation of seasonal cycle such as over south china sea. Seasonal cycle in FV is weaker compared to SLD and EUL. The dynamical cores exhibit different interannual variability of rainfall over Indian monsoon region, the period of maximum power corresponding to a dynamical core differs substantially with another. From this study there seems no superiority associated with FV dynamical core over all climate scales as seen in tracer transport. The next part of the study deals with impact of diurnal ocean atmosphere coupling in an AGCM,CAM3.1. Due to relatively low magnitude of diurnal cycle of SST and lack of SST observations over diurnal scales current atmospheric models are forced with SSTs of periods grater than a day. CAM 3.1 standalone model is forced with monthly SSTs but the interpolation is linear to every time step between any two months and this linear interpolation implies a linear diurnal and intraseasonal variation of SST which is not true in nature. To test the sensitivity of CAM3.1 to coupling of SST on diurnal scales, we prescribed over tropics(20S20N) a diurnal cycle of SST over daily mean interpolated SST of different magnitudes and phase comparable to observations. This idea of using a diurnal cycle of SST retaining seasonal mean SST in an atmospheric model is novel and provides an interesting frame work to test sensitivity of model to interpolations used in coupling of boundary conditions. Our analysis shows a high impact of using diurnal cycle of SST on simulation of mean rainfall over tropics. The impact in a case where diurnal cycle of SST is fixed and retained to daily mean SST implies that changes associated with a coupled model are to some extent due to change in representation of diurnal cycle of SST. A decrease of excess rainfall over western coast of Bay of Bengal and an increase of rainfall over northern bay of Bengal in such case is similar to the improvement due to coupling atmospheric model to a slab ocean model. This also implies that problems with current AMIP models in simulation of seasonal mean Indian monsoon rainfall could be due to erroneous representation of diurnal cycle of SST in models over this region where the diurnal cycle of SST is high in observations. The high spatial variability of the impact in various cases over tropics implies that a similar spatial variation of diurnal cycle could be important for accurate simulation of rainfall over tropics. Preliminary analysis shows that impact on rainfall was due to changes in moisture convergence. We also hypothesized that diurnal cycle of SST could trigger convection over regions such as northern Bay of Bengal and rainfall convergence feedback sustains it. The impact was also found on simulation of internal interannual variability of rainfall
32

Extended Range Predictability And Prediction Of Indian Summer Monsoon

Xavier, Prince K 05 1900 (has links)
Indian summer monsoon (ISM) is an important component of the tropical climate system, known for its regular seasonality and abundance of rainfall over the country. The droughts and floods associated with the year-to-year variation of the average seasonal rainfall have devastating effect on people, agriculture and economy of this region. The demand for prediction of seasonal monsoon rainfall, therefore, is overwhelming. A number of attempts to predict the seasonal mean monsoon have been made over a century, but neither dynamical nor empirical models provide skillful forecasts of the extremes of the monsoon such as the unprecedented drought of 2002. This study investigates the problems and prospects of extended range monsoon prediction. An evaluation of the potential predictability of the ISM with the aid of an ensemble of Atmospheric General Circulation Model (AGCM) simulations indicates that the interannual variability (IAV) of ISM is contributed equally by the slow boundary forcing (‘externally’ forced variability) and the inherent climate noise (‘internal’ variability) in the atmosphere. Success in predicting the ISM would depend on our ability to extract the predictable signal from a background of noise of comparable amplitude. This would be possible only if the ‘external’ variability is separable from the ‘internal’ variability. A serious effort has been made to understand and isolate the sea surface temperature (SST) forced component of ISM variability that is not strongly influenced by the ‘internal’ variability. In addition, we have investigated to unravel the mechanism of generation of ‘internal’ IAV so that the method of isolating it from forced variability may be found. Since the primary forcing mechanism of the monsoon is the large-scale meridional gradient of deep tropospheric heat sources, large-scale changes in tropospheric temperature (TT) due to the boundary forcing can induce interannual variations of the timing and duration of the monsoon season. The concept of interannually varying monsoon season is introduced here, with the onset and withdrawal of monsoon definitions based on the reversal of meridional gradient of TT between north and south. This large scale definition of the monsoon season is representative of the planetary scale influence of the El Ni˜no Southern Oscillation (ENSO) on monsoon through the modification of TT and the cross equatorial pressure gradient over the ISM region. A sig- nificant relationship between ENSO and monsoon, that has remained steady over the decades, is discovered by which an El Ni˜no (La Ni˜na) delays (advances) the onset, advances (delays) the withdrawal and suppresses (enhances) the strength of the monsoon. The integral effect of the meridional gradient of TT from the onset to withdrawal proves to be a useful index of seasonal monsoon which isolates the boundary forced signal from the influence of internal variations that has remained steady even in the recent decades. However, consistent with the estimates of potential predictability, the boundary forced variability isolated with the above definitions explains only about 50% of the total interannual variability of ISM. Detailed diagnostics of the onset and withdrawal processes are performed to understand how the ENSO forcing modifies the onset and withdrawal, and thus the seasonal mean monsoon. It is found that during an El Ni˜no, the onset is delayed due to the enhanced adiabatic subsidence that inhibits vertical mixing of sensible heating from the warm landmass during pre-monsoon months, and the withdrawal is advanced due to the horizontal advective cooling. This link between ENSO and monsoon is realized through the advective processes associated with the stationary waves in the upper troposphere set up by the tropical ENSO heating. The remaining 50% of the monsoon IAV is governed by internal processes. To unravel the mechanism of the generation of internal IAV, we perform another set of AGCM simulations, forced with climatological monthly mean SSTs, to extract the pure internal IAV. We find that the spatial structure of the intraseasonal oscillations (ISOs) in these simulations has significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season (seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broadband nature of the ISO spectrum, allowing the intraseasonal time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relationship is a manifestation of the binomial character of the rainfall time series. The remaining part of IAV may arise due to the complex land-surface processes, scale interactions, etc. We also find that the ISOs over the ISM region are not significantly modulated by the Pacific and Indian Ocean SST variations. Thus, even with a perfect prediction of SST, only about 50% of the observed IAV of ISM could be predicted with the best model in forced mode. Even so, prediction of all India rainfall (AIR) representing the average conditions of the whole country and the season may not always serve the purposes of monsoon forecasting. One reason is the large inhomogeneities in the rainfall distribution during a normal seasonal monsoon. Agriculture and hydrological sector could benefit more if provided with regional scale forecasts of active/break spells 2-3 weeks ahead. Therefore, we advocate an alternative strategy to the seasonal prediction. Here, we present a method to estimate the potential predictability of active and break conditions from daily rainfall and circulation from observations for the recent 24 years. We discover that transitions from break to active conditions are much more chaotic than those from active to break, a fundamental property of the monsoon ISOs. The potential predictability limit of monsoon breaks (∼20 days) is significantly higher than that of the active conditions (∼10 days). An empirical real- time forecasting strategy to predict the sub-seasonal variations of monsoon up to 4 pentads (20 days) in advance is developed. The method is physically based, with the consideration that the large-scale spatial patterns and slow evolution of monsoon intraseasonal variations possess some similarity in their evolutions from one event to the other. This analog method is applied on NOAA outgoing longwave radiation (OLR) pentad mean data which is available on a near real time basis. The elimination of high frequency variability and the use of spatial and temporal analogs produces high and useful skill of predictions over the central and northern Indian region for a lead-time of 4-5 pentads. An important feature of this method is that, unlike other empirical methods to forecast monsoon ISOs, this uses minimal time filtering to avoid any possible end-point effects, and hence it has immense potential for real-time applications.
33

A coral window on western tropical Pacific climate during the Pleistocene [electronic resource] / by Kelly Halimeda Kilbourne.

Kilbourne, Kelly Halimeda. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 79 pages. / Thesis (M.S.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Monthly d18O and Sr/Ca records generated from modern and fossil corals from Southwestern Pacific Ocean sites in the Republic of Vanuatu are used to assess the differences in mean climate state, seasonality, and interannual variability between a glacial and interglacial period. The modern coral contains a well-defined annual signal in d18O and Sr/Ca. The top 40 cm of the coral used in this study has a mean d18O value of -4.99+/-0.13%VPDB (2s) and a mean Sr/Ca value of 8.691+/-0.015mmol/mol (2s). El Nino-Southern Oscillation (ENSO) events are characterized by positive d18O and Sr/Ca anomalies, consistent with cooler temperatures and reduced rainfall that typifies ENSO at Vanuatu. The 12cm long fossil coral is dated to 346 ka + 25, - 9, based on uranium-series analysis and stratigraphic forward modeling, indicating that the fossil coral grew during MIS10 - a glacial period. / ABSTRACT: X-ray diffraction, petrographic inspection, SEM analysis, and geochemical considerations indicate excellent preservation. The mean d18O value is enriched by 0.74%, and the mean Sr/Ca value is equivalent, compared to the modern coral. Mathematical modeling of Pleistocene mean SST and SSS results in temperature estimates up to 2?C warmer and salinity up to 2 psu saltier than present-day conditions, if seawater Sr/Ca were 1-2% higher in MIS10. Our fossil coral data and modeling results preclude colder SST and lower SSS at Vanuatu during MIS10. Accurate estimates of past values of seawater Sr/Ca remain the largest obstacle to accurately reconstructing past tropical SST using pristine fossil corals. The fossil coral Sr/Ca annual range is similar to the modern range, indicating that seasonal SST ranges were similar, whereas the d18O annual range is about half that of the modern coral, indicating weaker past seasonal salinity variations. / ABSTRACT: The reduced seasonal SSS variations and increased SSTs near Vanuatu are interpreted as evidence that the SPCZ was displaced from its present location while the fossil coral lived. The geochemical response to El Nino events in the modern coral is observed twice in the fossil coral record, indicating that ENSO-like processes are not unique to interglacial time periods, but characterize the tropical Pacific at least back to MIS 10. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
34

Fluxes of carbon and water in a Pinus radiata plantation and a clear-cut, subject to soil water deficit

Arneth, Almut January 1998 (has links)
This thesis investigates the abiotic control of carbon (C) and water vapour fluxes (FCO₂ and E, respectively) in a New Zealand Pinus radiata D. Don plantation and a nearby clearcut. It concentrates on the limitation of these fluxes imposed by growing season soil water deficit. This results from low precipitation (658 mm a⁻¹) in combination with a limited root zone water storage capacity of the very stony soil (> 30% by volume). The thesis analyses results from seven eddy covariance flux measurement campaigns between November 1994 and March 1996. The study site was located in Balmoral Forest, 100 km north-west of Christchurch (42° 52' S, 172° 45' E), in a (in November 1994) 8-year-old stand. One set of measurements was conducted in an adjacent clearcut. Ecosystem flux measurements were accompanied by separate measurements of ground fluxes and of the associated environmental variables. Flux analysis focussed on the underlying processes of assimilation (Ac), canopy stomatal conductance (Gc) and respiration (Reco), using biophysical models coupled to soil water balance and temperature subroutines. Aiming to link time inegrated net ecosystem C (NEP) to tree growth, sequestration in tree biomass (NPP) was quantified by regular measurements of stem diameter using allometric relationships. Average rates of FCO₂ and E were highest in spring (324 mmol m⁻² d⁻¹ and 207 mol m⁻² d⁻¹, respectively) when the abiotic environment was most favourable for Gc and Ac. During summer, fluxes were impeded by the depletion of available soil water (θ) and the co-occurrence of high air saturation deficit (D) and temperature (T) and were equal or smaller than during winter (FCO₂ = 46 mmol m⁻² d⁻¹ in summer and 115 mmol m⁻² d⁻¹ in winter; E = 57 and 47 mol m⁻² d⁻¹, respectively). With increasingly dry soil, fluxes and their associated ratios became predominantly regulated by D rather than quantum irradiance, and on particularly hot days the ecosystem was a net C source. Interannually, forest C and water fluxes increased strongly with rainfall, and the simultaneously reduced D and T. For two succeeding years, the second having 3 % more rain, modelled NEP was 515 and 716 g C m⁻² a⁻¹, Ac 1690 and 1841 g C m⁻² a⁻¹ and Reco 1175 and 1125 g C m⁻² a⁻¹. NEP / E increased in wetter (and cooler) years (1.3 and 1.5 g kg⁻¹), reflecting a relatively larger gain in NEP. Responding mainly to increased rainfall during commonly dry parts of the year (ie summer), and reflecting the otherwise benign maritime climate of New Zealand, NEP during the winter months could exceed NEP during the middle of the notional tree growing season. Annual Ac, NEP, and NPP were strongly linearly related. This relation did not hold during bi-weekly periods when the processes of intermediate C storage were influential. Separate knowledge of tree growth and C fluxes allowed quantification of autotrophic, and heterotrophic respiration (Rhet≈ 0.4 NEP), as well as fine-root turnover (≈0.2 NEP). The ratio of NEP and stem volume growth was conservative (0.24 t C m⁻³) and allows a direct connection to be made between ecosystem carbon fluxes and forest yield tables. In the absence of living roots, the clearcut flux measurements demonstrated the expected limitation of Rhet by soil temperature (Ts) and θ. However, an additional 'pumping effect' was discovered at the open site whereby turbulence increased CO₂ efflux considerably when the soil surface was wet. Accounting for the combined effects of Ts, θ and turbulence, annual Rhet at the clear-cut site (loss to the atmosphere) was »50 % of NEP (C sequestered from the atmosphere) in the nearby forest. Clearly, there is an important contribution of C fluxes during early stages of ecosystem development to the total C sequestered over the lifetime of a plantation.
35

Vulgarisation d’un caractère prometteur d’adaptation à la variabilité environnementale : où peut-on promouvoir le photopériodisme des variétés de mil etsorgho sous les climats actuels et futurs en Afrique de l’Ouest ? / Scaling up a promising trait for adaptation to environmental variability : Where can photoperiod sensitivity be promoted under current and changing climates in West Africa?

Sako, Aichata Founé Mohamed 04 June 2015 (has links)
Structurée en trois principaux chapitres, cette étude présente une approche pluridisciplinaire en combinant desanalyses spatiales et temporelles de la variabilité interannuelle des saisons de pluies d’une base de données agroclimatique,des essais phénologiques mensuelles d’une sélection de variétés photopériodiques de mil et de sorgholocales et améliorées, et l’utilisation conjointe d’un modelé de culture calibre pour les effets de la latitude et d’unSystème d’Information Géographique (SIG). Elle permet de tirer des conclusions originales et d’identifier lesenvironnements cibles prometteurs pour la vulgarisation des variétés de mil et de sorgho photopériodiques enAfrique de l’Ouest. Elle met en évidence l’existence de relations significatives entre les réponses phénologiques,le degré de sensibilité à la photopériode des variétés et les facteurs environnementaux, dont les principales sont :‒ La variabilité interannuelle des pluies en Afrique de l’Ouest durant les cinquante dernières années (1950-2000) est marquée par une diminution globale de la pluviométrie annuelle caractérisée par une variabilitéaccrue des dates de début de saison des pluies dans les latitudes basses que dans les latitudes élevées etune variabilité interannuelles des dates de fin de saison plus notable sur les latitudes du Nord plus quedans les basses latitudes au sud.‒ La distribution spatiale des variétés de mil et de sorgho photopériodiques est étroitement liée à larépartition spatiale et temporelle de la variabilité des dates de débuts et de fin de la saison de pluies. Lesvariétés photopériodiques se localisent essentiellement dans les basses latitudes ou la variabilité des datesde début de saison est plus élevée que celle des dates de fin de saison plus stable.‒ La réponse phénologique des variétés de mil et de sorgho photopériodiques est strictement dépendantede la date de semis et de la latitude. Les effets de la latitude sur la phénologie et la réactionphotopériodique des variétés est proportionnelle à la distance entre la zone de culture d’une variété et salatitude d’origine.‒ Le modèle de développement des céréales photopériodiques « Impatience » calibré et corrigé à cet effet(effet de la latitude) prévois et défini avec plus de précision les zones d’adaptation variétale optimale pourles variétés de mil et de sorgho photopériodiques en Afrique de l’Ouest.‒ L’adéquation entre la durée du cycle phénologique calibrée par le modèle de culture corrigé de l’effet dela latitude et celle observée dans les systèmes agraires à base de mil et de sorgho photopériodiques dansles agro-systèmes villageois au Mali valide le modèle les cartes d’adaptation variétale optimale. / Structured in three main chapters; this study addresses multidisciplinary approach combining spatial and temporalanalysis of interannual variability of rainfall, multi-locations trials of a large and representative sample of photoperiodicvarieties of sorghum and millet combined with a photoperiod response crop model and Geographic Information System(GIS). It allowed identifying specific target environment to promote the vulgarization of photoperiodic varieties ofsorghum and millet in West Africa. This study depicted significant relationships between phenology, PP sensitivityresponses and environmental factors, where the mains components are listed below:‒ The interannual rainfall variability in West Africa over the past fifty years (1950-2000) was marked by ageneral decrease in annual rainfall characterized by high variability in the onset of growing period at lowerlatitudes and an increase in the interannual variability of the end of growing period in the northern latitudeswith least significant variability through climatic periods.‒ The spatial distribution of PP sensitivity varieties of millet and sorghum is closely related to the spatial andtemporal distribution of the interannual variability of the onset and end dates of growing period. Photoperiodsensitive varieties are located mainly at lower latitudes where the interannual variability in the onset of thegrowing period is much higher than the end of the growing period.‒ Phonological response and expression of photoperiod sensitivity are strictly dependent on sowing date andlatitude. Effects of latitude on the expression of photoperiod sensitivity and phenology are proportional tolatitude.‒ The "impatience" sub-crop model calibrated and corrected for latitudinal effect predicts and identifies moreaccurately optimal varietal adaptation areas for sorghum and millet varieties in West Africa.‒ The adequacy between calibrated duration of the phonological cycle by the crop model adjusted for latitudinaleffect and that observed in farming systems in agro-systems in Mali, allowed to validate the predicted optimalvarietal adaptation maps by defined the model.
36

Dinâmica do Atlântico tropical e seus impactos sobre o clima ao longo da costa do Nordeste do Brasil

Hounsou-gbo, Gbekpo Aubains. 08 April 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-03-18T13:04:49Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Gbekpo_Aubains_2015.pdf: 10869276 bytes, checksum: 0b22521ef971c75f3112dcbc74fcbb7a (MD5) / Made available in DSpace on 2016-03-18T13:04:50Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Gbekpo_Aubains_2015.pdf: 10869276 bytes, checksum: 0b22521ef971c75f3112dcbc74fcbb7a (MD5) Previous issue date: 2015-04-08 / As interações do sistema oceano-atmosfera no Atlântico tropical e suas contribuições à grande variabilidade da precipitação ao longo da costa do nordeste do Brasil (NEB) foram investigadas para os anos de 1974-2008. Os núcleos das estações chuvosas de Março-Abril e de Junho-Julho foram identificados para a parte norte do Nordeste do Brasil (NNEB) e a parte leste do Nordeste do Brasil (ENEB), respectivamente. As regressões lineares defasadas entre as anomalias da Temperatura da Superfície do Mar (TSM), da Pseudo tensão de cisalhamento de vento (PWS), do Fluxo de calor latente (LHF), da Umidade especifica do ar, e as anomalias (positivas e negativas) de precipitação forte no NNEB e no ENEB mostram que a variabilidade da precipitação dessas regiões é diferentemente influenciada pela dinâmica do Atlântico tropical. Quando a zona de convergência intertropical (ZCIT) é anormalmente deslocada para o sul alguns meses antes da estação chuvosa do NNEB, a fase negativa do Modo Meridional do Atlântico (AMM) (fortalecimento dos ventos alísios do nordeste, relaxamento dos ventos alísios do sudeste, maior evaporação no hemisfério norte, menor evaporação no hemisfério sul, TSM mais fria no hemisfério norte, e TSM mais quente no hemisfério Sul), aumenta a precipitação durante a estação chuvosa. O efeito oposto ocorre durante a fase positiva do AMM. Além disso, o estudo mostra a grande influência e um efeito preditivo da região Noroeste do Atlântico Equatorial noroeste (NWEA) sobre a precipitação do NNEB. Com relação ao estado subsuperficial do oceano, os resultados indicam que uma camada de barreira mais fina na NWEA de Novembro-Dezembro até Março-Abril é associada ao resfriamento progressivo da TSM, ao reforço do componente meridional do vento nordeste e precipitações intensas sobre o NNEB. Já a influência da dinâmica do Atlântico tropical sobre a variabilidade da precipitação no ENEB em Junho-Julho indica uma propagação para noroeste de uma área de forte correlação positiva de TSM e de Umidade específica do ar, deslocando-se da parte sudeste do Atlântico tropical (de Fevereiro-Março) para a região da Piscina Quente do Atlântico Sudoeste (SAWP), situada ao largo do Brasil (Junho-Julho). A área de propagação das anomalias, observada segue globalmente o caminho do ramo sul da Corrente Sul Equatorial (sSEC), que é responsável pelo transporte de calor oceânico de leste para oeste no Atlântico tropical sul. O deslocamento da fase mais quente da advecção horizontal de calor oceânico, na camada de mistura, de leste da bacia (entre 5º-15ºS) para a costa do Brasil em Junho-Agosto corrobora a influência da sSEC sobre o núcleo da chuva do ENEB. Uma aceleração dos ventos alísios de sudeste, associada a uma convergência da anomalia do vento sobre a SAWP, produz excesso de umidade do ar sobre a região e provoca mais precipitação sobre ENEB. O efeito oposto ocorre para os episódios menos chuvosos. De acordo com o estudo, a SAWP se mostra como uma área de potencial para o estabelecimento de um índice de previsão de chuvas no ENEB. / Tropical Atlantic Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian coast (NEB) were investigated for the years 1974-2008. The core rainy seasons of March-April and June-July were identified for northern Northeast Brazil (NNEB) and eastern Northeast Brazil (ENEB), respectively. Lagged linear regressions between sea surface temperature (SST), pseudo wind stress (PWS), latent heat flux (LHF) and air specific humidity anomalies over the entire tropical Atlantic and strong rainfall anomalies in NNEB and ENEB show that the rainfall variability of these regions is differentially influenced by the dynamics of the tropical Atlantic. When the intertropical convergence zone (ITCZ) is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode (strengthening of the northeast trade winds, relaxation of the southeast trade winds, strong evaporation in the north, weak evaporation in the south, colder SST in the North, and warmer SST in the South) increases precipitation during the rainy season. The opposite effect occurs during the positive phase of the dipole. Additionally, this study shows strong influence and predictive effect of the Northwestern Equatorial Atlantic (NWEA) on the NNEB rainfall. Thinner barrier layer in the NWEA from November-December to March-April is associated with progressive cooling of SST, strengthening of meridional component of the northeasterly wind and intense precipitations over the NNEB. The dynamical influence of the tropical Atlantic on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST and air specific humidity from the southeastern tropical Atlantic (February-March) to the Southwestern Atlantic Warm Pool (SAWP) offshore of Brazil (June-July). The northwestward-propagating area, observed from February-March to June-July, follows the same pathway of the southern branch of south equatorial current (sSEC), which is responsible of the oceanic heat transport from east to west in the southern tropical Atlantic. The displacement of the warmest phase of horizontal advection of the oceanic mixed layer heat from the eastern part (between 5-15ºS) to the Brazilian coast in June-August confirms this influence of the sSEC on core rainy season in the ENEB. Furthermore, according to our study, the SAWP could be used as index of rainfall prediction in ENEB. An early acceleration of the southeasterly trade winds, associated with a strong convergence of the wind anomaly over the SAWP, produces excessive humidity over the region and causes more precipitation over ENEB. The opposite effect occurs for less rainy episodes.
37

Large scale spatio-temporal variation of carbon fluxes along the land-ocean continuum in three hotspot regions

Hastie, Adam 03 June 2019 (has links) (PDF)
Previous research has shown a close relationship between the terrestrial and aquatic carbon (C) cycles, namely that part of the C fixed via terrestrial net primary production (NPP) is exported to inland waters. In turn, it has been demonstrated that once in the freshwater system C can not only be transported laterally as dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved inorganic carbon (DIC) but is also mineralized and evaded back to the atmosphere as CO2, or buried in sediments. A number of hotspot areas of aquatic CO2 evasion have been identified but there are considerable gaps in our knowledge, particularly associated with understanding and accounting for the temporal and spatial variation of aquatic C fluxes at regional to global scales, which we know from local scale studies, to be substantial. In this thesis, three important regional hotspots of LOAC activity were identified, where significant gaps in our understanding remain.For the boreal region, an empirical model is developed to produce the first high resolution maps of boreal lake pCO2 and CO2 evasion, providing a new estimate for total evasion from boreal lakes of 189 (74–347) Tg C yr-1, which is more than double the previous best estimate. The model is also used along with future projections of terrestrial NPP and precipitation, to predict future lake CO2 evasion under future climate change and land-use scenarios, and it is found that even under the most conservative scenario CO2 evasion from boreal lakes may increase 38% by 2100. For the Amazon Basin, the ORCHILEAK land surface model driven by a newly developed wetland forcing file, is used to show that the export of C to and CO2 evasion from inland waters is highly interannually variable; greatest during wet years and lowest during droughts. However, at the same time overall net ecosystem productivity (NEP) and C sequestration is highest during wet years, partly due to reduced decomposition rates in water-logged floodplain soils. Furthermore, it is shown that aquatic C fluxes display greater variation than terrestrial C fluxes, and that this variation significantly dampens the interannual variability in NEP of the Amazon basin by moderating terrestrial variation. Finally, ORCHILEAK is applied to the Congo Basin to investigate the evolution of the integrated aquatic and terrestrial C fluxes from 1861 to the present day, and in turn to 2099 under a future climate and land-use scenario. It is shown that terrestrial and aquatic fluxes increase substantially over time, both over the historical period and into the future, and that these increases are largely driven by atmospheric CO2. The proportion of terrestrial NPP lost to the LOAC also rises from 3% in 1861 to 5% in 2099 and this trend is driven not only by atmospheric CO2 but also by climate change. This is in contrast to the boreal region where the proportion of NPP exported to inland waters is predicted to remain relatively constant, and to the Amazon, where a decrease has been predicted, due to differences in projected climate change. / L’état de l’art dans le domaine a montré qu’il y avait un lien étroit entre les cycles du carbone terrestre et aquatique :en effet, une partie du carbone fixé par photosynthèse (productivité primaire brute) est transférée vers les milieux aquatiques continentaux pour être ensuite transporté latéralement sous forme de carbone organique dissous (COD), de carbone organique particulaire (COP), de carbone inorganique dissous (CID). Durant ce transfert latéral, le carbone peut être minéralisé puis réémis vers l’atmosphère sous forme de CO2 ou enfoui dans les sédiments. Cependant, nous sommes encore loin de bien comprendre et surtout de quantifier les variations temporelles et spatiales des flux de carbones à l’échelle régionale et globale, même si les études faites à l’échelle locale nous montrent qu’elles sont importantes. Au cours de cette thèse, nous nous sommes focalisés sur 3 grandes régions pour lesquelles la connaissance des flux de carbone le long du continuum aquatique reliant les écosystèmes terrestres aux océans étaient encore très parcellaire.Pour la région boréale, un modèle empirique a été développé afin de produire les premières cartes à haute résolution de pCO2 et d’émission de CO2 pour les lacs boréaux. Les résultats du modèle nous ont permis de contraindre les émissions totales de CO2 pour les lacs boréaux à 189 (74-347) Tg C an-1, soit plus du double des estimations précédentes. Ce modèle a ensuite été couplé aux projections de production primaire brute terrestre et de précipitations afin de prédire les émissions de CO2 pour ces lacs pour différents scénarios de changement climatique et d’occupation des sols. Les résultats montrent que même en prenant le scénario le plus conservatif, les émissions de CO2 des lacs boréaux augmenteraient de 38% d’ici 2100.Pour le bassin de l’Amazone, le modèle d’écosystème terrestre ORCHILEAK, paramétré par de nouvelles donnés de forçage des zones humides, a été utilisé pour démontrer que l’export de carbone terrestre vers les réseaux fluviaux ainsi que les émissions de CO2 ont une très grande variabilité interannuelle :émissions élevées lors des années à forte précipitation et basses lors des années sèches. Cependant, la productivité nette de l’écosystème (PNE) Amazone et la fixation nette de carbone à l’échelle du bassin sont plus élevées lors des années humides, en partie dû au taux de décomposition de carbone organique réduit lorsque les sols sont saturés en eau. De plus, les résultats montrent que les flux de carbone des systèmes aquatiques ont une plus grande variabilité que les flux terrestres, ce qui atténue considérablement la variabilité interannuelle de la PNE du bassin de l'Amazone.Pour finir, nous avons appliqué ORCHILEAK au bassin du Congo afin d’étudier l’évolution intégrée des flux de carbone terrestres et aquatiques de 1861 à nos jours, ainsi que de projeter leur devenir au cours du 21eme siècle selon les scénarios de changement climatiques et de changement d’occupation des sols. Nous avons montré que les flux terrestres et aquatiques augmentent de façon significative durant la période historique et dans le futur, cette augmentation étant largement induite par l’augmentation du CO2 atmosphérique et, dans une moindre mesure, par le changement climatique. En particulier, la proportion de la productivité primaire brute terrestre exportée vers le continuum aquatique passe de 3% en 1861 à 5% en 2099. Ce résultat contraste avec ceux obtenu pour la région boréale où cette proportion reste relativement constante et pour l’Amazone où c’est une baisse qui est en fait prédite. Ces différences s’expliquent par des trajectoires de changement climatique distinctes pour ces 3 régions. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
38

Response and Biophysical Regulation of Carbon Fluxes to Climate Variability and Anomaly in Contrasting Ecosystems

Chu, Housen January 2014 (has links)
No description available.
39

Modes interannnuels de la variabilité climatique de l'Atlantique tropical, dynamiques oscillatoires et signatures en salinité de surface de la mer / Interannual climatic variabiblity modes of the tropical atlantic, oscillatory dynamics and signatures in sea surface salinity

Awo, Founi Mesmin 10 October 2018 (has links)
Dans cette thèse, nous avons abordé plusieurs thématiques liées aux modes de variabilité climatique dans l'Atlantique tropical à l'échelle interannuelle. Les analyses statistiques nous ont permis dans un premier temps de mettre en évidence les deux principaux modes dominants de cette variabilité interannuelle: un mode équatorial et un mode méridien. Le mode équatorial est responsable d'anomalies de température de surface de la mer (SST) principalement dans le Golfe de Guinée et est identifié par des variations de la pente du niveau de la mer dans la bande équatoriale. Il est dû à des rétroactions dynamiques entre le vent, le niveau de la mer et la SST. Quant au mode méridien, il se manifeste par des fluctuations inter-hémisphériques de SST et est contrôlé par des rétroactions dynamiques et thermodynamiques entre le vent, l'évaporation et la SST. L'évaluation du couplage de ces variables clés du mode méridien nous a permis de proposer un modèle conceptuel pour expliquer les principaux mécanismes responsables des oscillations du mode méridien. Le modèle a montré que le mode méridien résulte de la superposition d'un mécanisme auto-entretenu basé sur les rétroactions positives et négatives générant des oscillations régulières de haute fréquence (2-3 ans) et d'un autre mécanisme d'oscillation basse fréquence (4-9 ans) lié à l'influence d'ENSO du Pacifique Est. Comme l'évolution de ces deux modes est fortement liée au déplacement méridien de la zone de convergence intertropicale (ITCZ) qui transporte les pluies, nous avons ensuite identifié la signature de ces modes sur la salinité de la surface de la mer à l'aide observations in situ et d'une simulation numérique régionale. Les processus océaniques et/ou atmosphériques responsables de la signature de chaque mode ont été également identifiés grâce à un bilan de sel dans la couche de mélange du modèle validé. Le bilan de sel a révélé que le forçage atmosphérique, lié à la migration de l'ITCZ, contrôle la région équatoriale tandis que l'advection, due à la modulation des courants, du gradient vertical et le mélange à la base de la couche de mélange, explique les variations de SSS dans les régions sous l'influence des panaches. [...] / In this thesis, we investigate several topics related to the interannual climatic modes in the tropical Atlantic. Statistical analyses allows us to extract the two main dominant modes of interannual variability: an equatorial mode and a meridional mode. The equatorial mode is responsible for Sea Surface Temperature (SST) anomalies mainly found in the Gulf of Guinea and is linked to variations of the sea-level slope in the equatorial band. It is due to dynamic feedbacks between zonal wind, sea level and SST. The meridional mode is characterised by inter-hemispheric SST fluctuations and is controlled by dynamic and thermodynamic feedbacks between the wind, evaporation and SST. After quantifying the coupling between key variables involved in the meridional mode, we develop a conceptual model to explain the main mechanisms responsible for meridional mode oscillations. The model shows that the meridional mode results from the superposition of a self-sustaining mechanism based on positive and negative feedbacks generating regular oscillations of high frequency (2-3 years) and another low frequency oscillation mechanism (4-9 years) related to the influence of ENSO. As the evolution of these two modes is strongly linked to the meridional shift of the Intertropical Convergence Zone (ITCZ) and associated rainfall maximum, we identify the signature of these modes on Sea Surface Salinity (SSS) using in situ observations and a regional numerical simulation. Oceanic and/or atmospheric processes responsible for the signature of each mode are also identified through a mixed-layer salt budget in the validated model. The salt balance reveals that the atmospheric forcing, related to the ITCZ migration, controls the equatorial region while the advection, due to the modulation of current dynamics, the vertical gradient and mixing at the base of the mixed layer, explains SSS variations in regions under the influence of plumes. Finally, we study the Equatorial Kelvin wave characteristics and influences on the density that are involved in the meridional and equatorial mode connection processes, using a very simplified model of gravity wave propagation along the equator. After a brief description of this model, which was initially constructed to study dynamics in the equatorial Pacific, we apply it to the specific case of the equatorial Atlantic by validating its analytical and numerical solutions under adiabatic conditions. [...]
40

Variations actuelles du niveau de la mer / Present day sea level variations

Dieng, Habib Boubacar 10 January 2017 (has links)
Depuis le début des années 1990 on suit l'évolution globale du niveau de la mer grâce aux satellites altimétriques. Ils observent une hausse du niveau moyen global de la mer (GMSL) de 3.4 ± 0.4 mm/an sur la période 1993-2016 (ce qui représente le double de ce qui a été observé au cours du 20ème siècle par les marégraphes, hausse à 1.7 mm/an entre 1900 et 1990). Le GMSL présente aussi des fluctuations interannuelles qui peuvent atteindre quelques millimètres, surtout pendant les épisodes ENSO. Cette hausse n'est pas régionalement uniforme : elle a été 3 fois plus rapide que la hausse moyenne globale dans certaines zones entre 1993 et 2016. Au cours du 21ème siècle, on s'attend à une hausse accrue du GMSL pouvant aller jusqu'à 1 m à l'horizon 2100, avec une forte variabilité régionale. Il est donc important de comprendre l'évolution actuelle du niveau des océans qui constitue une menace sérieuse pour de nombreuses régions côtières basses souvent très peuplées. Cette thèse s'inscrit dans le contexte du projet niveau de la mer CCI (Climate Change Initiative) de l'Agence Spatiale Européenne (ESA) ayant pour objectif de fournir de meilleurs produits du niveau de la mer combinant les missions Topex/Poseidon, Jason-1/2, ERS-1/2 et Envisat. L'objectif premier de cette thèse est de valider ces produits SL_CCI du niveau de la mer en utilisant différentes approches, en particulier par l'étude du bilan (comparaison du GMSL observé avec la somme des différentes contributions : composante stérique, fonte des glaces continentales et transferts d'eau depuis les terres émergées). Un autre objectif est d'estimer les composantes du niveau de la mer mal connues, et tout particulièrement le contenu thermique de l'océan profond non mesurable par le système Argo, et la contribution du stock d'eau sur les continents. Ces travaux ont montré que la contribution de l'océan profond en dessous de 2000m est faible sur la période 2005-2013 et contenue dans la barre d'incertitudes des données (erreurs qui proviennent essentiellement, (1) des produits niveau de la mer altimétriques et des lacunes de la couverture géographique des données Argo dans la région Indonésienne pour la tendance et (2) des produits GRACE et Argo pour la variabilité interannuelle). Nos résultats et la méthode utilisée montrent que le niveau de la mer et ses composantes sont encore entachés d'erreurs importantes. Dans la deuxième partie, nous avons analysé l'influence du phénomène ENSO (El Niño et La Niña) sur les variations interannuelles du GMSL. Nous montrons que lors des évènements La Niña comme celui de 2010-2011, le déficit de précipitations sur l'océan (et l'excès sur les continents) conduit à une baisse temporaire de la masse de l'océan global et donc du niveau de la mer. C'est essentiellement la variation de masse de l'océan qui explique la variabilité interannuelle du niveau de la mer lors des évènements ENSO, et le déficit (La Niña) ou excès (El Niño) de masse se trouve confiné dans l'océan Pacifique tropical Nord. Pour finir, nous analysons l'évolution de la température moyenne de l'air et de l'océan en surface sur la période du "hiatus" (2003-2013). Nous montrons que ce hiatus, c'est à dire le ralentissement récent de la hausse de la température moyenne globale de la Terre est un phénomène quasi global, même si le Pacifique tropical Est s'est fortement refroidi. Cette "supposée" pause récente s'explique par la variabilité naturelle interne du climat. La Terre est toujours en état de déséquilibre énergétique dû à l'accumulation de gaz à effet de serre. Nous mettons en évidence le rôle de la variabilité naturelle à court terme sur les changements à plus long terme associés au réchauffement climatique anthropique. / Since the early 1990s sea level is routinely measured using high-precision altimeter satellites. These observe a rise in global mean sea level (GMSL) of 3.4 ± 0.4 mm/yr over the 1993-2016 period (which is twice what has been observed during the 20th century by the tide gauges, with a rise of 1.7 +/- 0.3 mm/yr). The interannual variability in the GMSL can reach several millimeters, especially during ENSO events. The rate of sea level rise is not regionally uniform. During the altimetry era, it was three times faster than the global mean in some areas. During the 21st century, we expect a greater rise of the GMSL than today, up to 1 m in 2100, with strong regional variability. It is therefore important to understand the current evolution of the sea level, since it represents a serious threat to many low coastal areas, often densely populated of the planet. My thesis research deals with the Sea Level CCI (Climate Change Initiative) project of the European Space Agency (ESA) which objective is to provide improved sea level products combining several altimetry missions, including Topex/Poseidon, Jason-1/2, ERS-1/2 and Envisat. The primary objective of my thesis was to validate the CCI sea level products using different approaches, in particular the sea level budget approach. It consists of comparing the observed GMSL with the sum of different contributions : the steric component, melting of continental ice and transfers of water between the land surface and oceans. Another objective was to estimate the poorly known components to sea level rise, in particular the heat content of the deep ocean not measurable by Argo, and the contribution of water storage on the land. My work has shown that the contribution of the deep ocean below 2000m to the rising sea level is small over the 2005-2013 periods and not significant compared to the data uncertainties. The main uncertainties come from: (1) -in terms of trend- the altimetry sea level products and gaps in the geographical coverage of Argo data in the Indonesian region, and (2) -in terms of interannual variability- the GRACE and Argo products. My results and the method used show that the sea level and its components are still affected by important errors. In the second part, I analyzed the influence of ENSO (El Niño and La Niña) on the interannual variations of the GMSL. I showed that during La Niña events, like that of 2010-2011, the rainfall deficit over the ocean (and excess over the continents) leads to a temporary decrease in the global ocean mass and therefore in the GMSL. This is essentially the ocean mass variation that explains the interannual variability of the GMSL during ENSO events. Furthermore, the deficit (La Niña) or excess (El Niño) ocean mass is confined in the north tropical Pacific Ocean. Finally, I analyzed the evolution of the average temperature of air and ocean surface over the period of the "hiatus" (2003-2013). I showed that this hiatus, i.e. the recent slowdown in the rise of the global mean Earth's temperature is an almost global phenomenon, though cooling of the tropical eastern Pacific has slightly contributed. This recent pause is attributable to natural internal climate variability. The Earth is indeed still in a state of energetic imbalance due to the accumulation of greenhouse gases. I highlighted the role of the natural variability that is superimposed to the anthropogenic global warming.

Page generated in 0.2046 seconds