• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 10
  • 9
  • 6
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 47
  • 42
  • 19
  • 17
  • 16
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Variation in length of proteins by repeats and disorder regions

Sagit, Rauan January 2013 (has links)
Protein-coding genes evolve together with their genome and acquire changes, some of which affect the length of their protein products. This explains why equivalent proteins from different species can exhibit length differences. Variation in length of proteins during evolution arguably presents a large number of possibilities for improvement and innovation of protein structure and function. In order to contribute to an increased understanding of this process, we have studied variation caused by tandem domain duplications and insertions or deletions of intrinsically disordered residues. The study of two proteins, Nebulin and Filamin, together with a broader study of long repeat proteins (&gt;10 domain repeats), began by confirming that tandem domains evolve by internal duplications. Next, we show that vertebrate Nebulins evolved by duplications of a seven-domain unit, yet the most recent duplications utilized different gene parts as duplication units. However, Filamin exhibits a checkered duplication pattern, indicating that duplications were followed by similarity erosions that were hindered at particular domains due to the presence of equivalent binding motifs. For long repeat proteins, we found that human segmental duplications are over-represented in long repeat genes. Additionally, domains that have formed long repeats achieved this primarily by duplications of two or more domains at a time. The study of homologous protein pairs from the well-characterized eukaryotes nematode, fruit fly and several fungi, demonstrated a link between variation in length and variation in the number of intrinsically disordered residues. Next, insertions and deletions (indels) estimated from HMM-HMM pairwise alignments showed that disordered residues are clearly more frequent among indel than non-indel residues. Additionally, a study of raw length differences showed that more than half of the variation in fungi proteins is composed of disordered residues. Finally, a model of indels and their immediate surroundings suggested that disordered indels occur in already disordered regions rather than in ordered regions. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 4: Manuscript.</p>
52

NMR methods for intrinsically disordered proteins : application to studies of NS5A protein of hepatitis C virus / Méthodes RMN pour protéines intrinsèquement désordonnées : application pour études structurales de la protéine NS5A de hépatite C virus

Burkart-Solyom, Zsofia 06 November 2014 (has links)
Les protéines intrinsèquement désordonnées sont caractérisées par un manque de structure 3D stable et sont biologiquements actives dans cet état. La spectroscopie RMN est la méthode de choix pour leurs études à une résolution atomiques, car la cristallographie aux rayons X ne permet pas leur étude en raison de leur caractère hautement dynamique.Cependant, l'étude par spectroscopie RMN de ces protéines est difficiles à cause du grand nombre de recouvrement entre les signaux dans le spectre résultant de l'absence d'un réseau de liaison hydrogène qui pourrait stabiliser la structure et permettre d'obtenir une dispersion des signaux plus élevé. Un autre problème est la sensibilité expérimentale car souvent le temps de mesure est limité en raison de leur prédisposition à la dégradation protéolytique. Dans la première partie de cette thèse les protéines intrinsèquement désordonnées sont introduites. La deuxième partie porte sur la spectroscopie RMN des protéines intrinsèquement désordonnées, des expériences RMN de type BEST-TROSY sont présentées et sont montrées comme étant bien adapté pour l'étude de protéines intrinsèquement désordonnées, en particulier pour celle avec une grande étendue de structure résiduelle. Des expériences 3D BEST-TROSY sont présentées pour leur attribution, une version proline-éditée permet d'aider à l'identification de ce type d'acide aminé et enfin l'expérience HETex-BEST-TROSY qui permet une mesure rapide des taux de change de solvants. Dans la troisième partie de cette thèse ces expériences RMN sont appliquées pour l'étude de la région intrinsèquement désordonnés (domaines 2 et 3) de la protéine NS5A du virus de l'hépatite C (VHC). La structure secondaire résiduel présente dans le fragment de la protéine est analysée. La comparaison des données RMN sur trois constructions de la protéine de différentes longueurs ainsi que les données de SAXS permettent l'identification des interactions transitoires à longue portée entre les différentes régions de cette protéine. En outre, les modes de liaison de ce fragment de protéine à Bin1 domaine SH3 sont analysés. Enfin, les résultats préliminaires obtenus sur l'étude de la phosphorylation de NS5A du VHC par certaines kinases, qui ont été montrées comme biologiquement pertinents, sont présentés. / Intrinsically disordered proteins are characterized by a lack of a stable, 3D structure and fulfill their biological role as such. NMR spectroscopy is the method of choice for their atomic resolution studies, as X-ray crystallography is not amenable to them due to their highly dynamic character.However, NMR spectroscopic studies of these proteins are challenging, because of the high extent of signal overlap in the spectra, resulting from the absence of a hydrogen-bonding network that would lead to structuring and higher signal dispersion. A further problem is experimental sensitivity as often measurement time is limited due to their predisposition for proteolytic degradation. In the fist part of this thesis intrinsically disordered proteins are introduced. The second part focuses on NMR spectroscopy of IDPs, BEST-TROSY-type NMR methods are presented and are shown to be well suited for large IDPs, especially for those with high extent of residual structure. 3D BEST-TROSY experiments are presented for assignment, a proline-edited version for aiding amino acid-type identification, and the HETex-BEST-TROSY experiment that allows rapid measurement of solvent exchange rates. In the third part of this thesis NMR methods are applied for study of the entire intrinsically disordered region (domains 2 and 3) of NS5A protein of hepatitis C virus. The residual secondary structure in this protein fragment is analyzed. Comparison of NMR data on three protein constructs of different lengths together with SAXS data allows identification of transient long range interactions between different regions of this protein. Furthermore, the binding modes of this protein fragment to Bin1 SH3 domain are analyzed. Finally, the preliminary results obtained on investigation of phosphorylation of NS5A of HCV by certain kinases, reported to be biologically relevant, are presented
53

Ki-1/57 e uma proteina intrinsecamente desordenada envolvida em mecanismos de regulação genica / Ki-1/57 is an intrinsically disordered protein involved in mechanisms of gene regulation

Bressan, Gustavo Costa 08 April 2009 (has links)
Orientador: Jorg Kobarg / Tese (doutorado) - Universidade Estadual de Campinas, Instituto e Biologia / Made available in DSpace on 2018-08-14T00:02:08Z (GMT). No. of bitstreams: 1 Bressan_GustavoCosta_D.pdf: 16510013 bytes, checksum: 30f3887b16b18caf89b81d091caca8d7 (MD5) Previous issue date: 2009 / Resumo: A proteína Ki-1/57 foi descoberta através da reação cruzada do anticorpo monoclonal Ki-1 em células do linfoma de Hodgkin. Foi demonstrado previamente que Ki-1/57 sofre fosforilação por PKCs e metilação por PRMT1, uma arginino metiltransferase que modula diversas proteínas ligadoras a RNA. Nesse trabalho, é mostrada a interação de Ki-1/57 com sondas de RNA e com proteínas envolvidas no controle de splicing de pré-mRNA. O seu envolvimento no controle de splicing foi confirmado em ensaios de cotransfecção em células de mamíferos. Análises de microscopia de confocal mostraram a localização da construção EGFP-Ki-1/57 em diferentes corpúsculos nucleares de forma dependente da metilação celular. Essas regiões compreendem nucléolos, speckles, corpos de Cajal e GEMS, conhecidamente envolvidas na biogênese, maturação ou armazenamento de complexos de processamento de RNA/pré-RNA no núcleo. Análises a partir de construções truncadas sugeriram o N-terminal de Ki-1/57 como importante para a interação com proteínas reguladoras de splicing e localização nos corpúsculos nucleares, enquanto o C-terminal como necessário e suficiente para a ligação a RNA poliuridina e localização citoplasmática. Por outro lado, essas duas regiões pareceram atuar em conjunto no processamento do gene E1A. Similarmente a hnRNPQ, Ki-1/57 e outras proteínas funcionalmente relacionadas, SFRS9 é mostrada como alvo de metilação por PRMT1. A inibição da metilação resultou em um aumento do número de células apresentando localização da construção EGFP-SFRS9 no interior de nucléolos, mostrando a importância dessa modificação para a localização subnuclear de SFRS9. As características estruturais de Ki-1/57 também foram investigadas através de diferentes abordagens. Análises por SAXS, gel filtração analítica e ultracentrifugação analítica indicaram uma estrutura bastante alongada e flexível para a construção C-terminal 6xhis-(122-413)Ki-1/57. Ensaios de proteólise limitada também sugeriram uma baixa composição de núcleos hidrofóbicos estáveis e compactos. A capacidade de Ki-1/57 em sofrer enovelamento induzido após a interação com ligantes também foi monitorada em experimentos de dicroísmo circular. Embora não tenha sido observada nenhuma alteração estrutural após a incubação de 6xhis-(122-413)Ki-1/57 com o RNA poliuridina, a adição de TFE foi capaz de promover pequenos ganhos de elementos de estrutura secundária regular. Esses dados, juntamente com predições computacionais, sugerem que Ki-1/57 é uma nova proteína intrinsecamente desordenada, o que pode explicar o elevado número de diferentes proteínas parceiras que ela é capaz de interagir. / Abstract: The Ki-1/57 protein has been discovered through the cross reactivity of the monoclonal antibody Ki-1 in Hodgkin lymphoma cells. Previously, it was demonstrated that Ki-1/57 undergoes phosphorylation by PKCs and methylation by PRMT1, an arginine methyltransferase that modulates many RNA binding proteins. Here, the interaction of Ki-1/57 with RNA polyuridine and proteins involved in pre-mRNA splicing control are shown. Its involvement in splicing regulation was confirmed by cotransfection assays in mammalian cells. Confocal microscopy analyses revealed the localization of EGFP-Ki-1/57 at different nuclear bodies, depending on the cellular methylation status. These regions include nucleoli, speckles, Cajal bodies and GEMS, which are all known to be involved in biogenesis, maturation or storing of RNA/pre-mRNA processing complexes in the nucleus. Analysis from experiments with truncated forms of Ki-1/57 suggested its N-terminus as important for its interaction with splicing proteins and localization at nuclear bodies. In turn, its C-terminus was seen as necessary and sufficient for the cytoplasmic localization and polyuridine RNA binding. However, these two regions seemed to be required working together for an efficient splicing activity on E1A gene. Similarly to hnRNPQ, Ki-1/57 and others functionally related proteins, SFRS9 is shown here as a target for methylation by PRMT1. The inhibition of this activity resulted in increase in the number of cells showing EGFP-SFRS9 in the nucleoli, suggesting the importance of methylation for the subnuclear localization of SFRS9. The structural characteristics of Ki-1/57 also have been investigated through different approaches. Analyses by SAXS, analytical gel filtration and analytical ultracentrifugation techniques suggested a very elongated and flexible structure for the C-terminal construct (122-413)Ki-1/57. Also, limited proteolysis analysis suggested a low composition of stable and compact hydrophobic cores. The ability of Ki-1/57 in suffering binding-induced folding was also investigated. Although no structural modification has been observed after incubating (122-413)Ki-1/57 with a polyuridine RNA, the addition of the TFE probe was able to promote a small gain of regular secondary structural elements. These findings, together with different computational predictions, pointed out that Ki-1/57 is a novel intrinsically unstructured protein. This could explain the wide array of protein partners with which it is able to interact. / Doutorado / Bioquimica / Doutor em Biologia Funcional e Molecular
54

Structural and dynamic characterization of the Golgi Reassembly and Stacking Protein (GRASP) in solution / Caracterização estrutural e dinâmica da proteína de estruturação e compactação do complexo de Golgi (GRASP) em solução

Luis Felipe Santos Mendes 07 February 2018 (has links)
The Golgi complex is an organelle responsible for receiving synthesized cargo from the endoplasmic reticulum for subsequent post-translations modifications, sorting and secretion. A family of proteins named Golgi Reassembly and Stacking Proteins (GRASP) is essential for the correct assembly and laterally tethering of the Golgi cisternae, a necessary structuration to keep this organelle working correctly. The GRASP structure is mainly composed of two regions: an N-terminal formed by two PDZ domains connected by a short loop (GRASP domain) and a non-conserved C-terminal region, rich in serine and proline residues. Although there are now a few crystal structures solved for the N-terminal domain, it is surprising to notice that no information is currently available regarding a full-length protein or even about dynamic and structural differences between the two PDZs in solution, which is the main functional region of this protein. Using a full-length GRASP model, we were capable of detecting the coexistence of regular secondary structures and large amounts of disordered regions. The overall structure is less compact than a regular globular protein and the high structural flexibility makes its hydrophobic core more accessible to solvent. GRASP coexist in a dynamic conformational ensemble of a µs-ms timescale. Our results indicate an unusual behavior of GRASP in solution, closely resembling a class of collapsed intrinsically disordered proteins called molten globule. We report here also the disorder-to-order transition propensities for a native molten globule-like protein in the presence of different mimetics of cell conditions. Changes in the dielectric constant (such as those experienced close to the membrane surface) seem to be the major factor capable of inducing several disorder-to-order transitions in GRASP, which seems to show very distinct behavior when in conditions that mimic the vicinity of the membrane surface as compared to those found when free in solution. Other folding factors such as molecular crowding, counter ions, pH and phosphorylation exhibit lower or no effect on GRASP secondary structure and/or stability. This is the first study focusing on understanding the disorder-to-order transitions of a molten globule structure without the need for any mild denaturing condition. Regarding the PDZs that form the GRASP domain, we observed that GRASPs are formed by a more unstable and flexible PDZ1 and much more stable and structurally well-behaved PDZ2. More than that, many of the unstable regions found in PDZ1 are in the predicted binding pocket, suggesting a structural promiscuity inside this domain that correlates with the functional promiscuity of interacting with multiple protein partners. This thesis presents the first structural characterization of a full-length GRASP, the first model of how GRASPs (or any molten globule-like protein) can be modulated by the cell during different cell functionalities and the first work in the community proving that the established idea that both PDZs are structurally equivalent is not completely right / O complexo de Golgi é um organela responsável pela recepção de carga sintetizada no retículo endoplasmático e por subsequente modificações pós-traducionais, classificação e secreção. Uma família de proteínas chamada Golgi Reassembly and Stacking Proteins (GRASP) é essencial para o correto empilhamento das cisternas e conexões laterais das pilhas do complexo de Golgi, uma estruturação necessária para manter essa organela funcionando corretamente. A estrutura das GRASPs é composta de duas regiões principais: uma extensão N-terminal formado por dois domínios PDZ conectados por um loop (domínio GRASP) e uma região C-terminal não conservada, rica em resíduos de serina e prolina. Embora existam algumas estruturas cristalográficas resolvidas para o domínio N-terminal, é surpreendente notar que não havia nenhuma informação na literatura sobre a construção inteira de um GRASP, ou mesmo um estudo detalhado sobre os PDZs no N-terminal em solução, que é a principal região funcional dessa proteína. Usando um modelo de GRASP em sua construção completa, fomos capazes de detectar a coexistência de estruturas secundárias regulares e grandes quantidades de regiões desordenadas. A estrutura é menos compacta do que uma proteína globular e a alta flexibilidade estrutural torna o seu núcleo hidrofóbico mais acessível ao solvente. GRASPs coexistem em um conjunto conformacional dinâmico numa escala de tempo característico de s-ms. Nossos resultados indicam um comportamento incomum da GRASP em solução, similar à de uma classe de proteínas intrinsicamente desordenadas colapsadas conhecidas como glóbulos fundidos. Nós relatamos também as propensões de transição estrutural do tipo desordem-ordem para uma proteína glóbulo fundido nativa, induzidas pela presença de diferentes miméticos de condições celulares especificas. A mudança na constante dielétrica do meio (como as experimentadas próximas à superfície da membrana biológica) é o principal modulador estrutural, capaz de induzir múltiplas transições desordem-ordem na GRASP, sugerindo um comportamento muito distinto quando em condições que imitam a vizinhança da superfície da membrana em comparação com os encontrados quando livre em solução. Outros fatores de enovelamento, tais como o molecular crowding, contra-ions, pH e a fosforilação exibem efeitos menores (ou nenhum) na estrutura secundária e/ou estabilidade da GRASP. Este é o primeiro estudo focado na compreensão das transições desordem-ordem em uma estrutura do tipo glóbulo fundido sem que houvesse a necessidade de qualquer condição desnaturante. Em relação aos PDZs que formam o domínio GRASP, observamos que as GRASPs são formadas por um PDZ1 mais instável e flexível e um PDZ2 muito mais estável e estruturalmente bem comportado. Mais do que isso, muitas das regiões instáveis encontradas no PDZ1 estão no predito bolsão de ligação, sugerindo uma promiscuidade estrutural dentro desse domínio que se correlaciona com a promiscuidade funcional de interação com múltiplos parceiros proteicos. É apresentado nesta tese a primeira caracterização estrutural de uma GRASP em sua forma completa, o primeiro modelo de como as GRASPs (ou qualquer proteína em forma de glóbulo fundido) pode ser modulada estruturalmente pela célula durante diferentes funcionalidades e o primeiro trabalho na comunidade provando que a estabelecido ideia de que ambos os PDZs são estruturalmente equivalentes não é completamente correta
55

Proteus : A new predictor for protean segments

Söderquist, Fredrik January 2015 (has links)
The discovery of intrinsically disordered proteins has led to a paradigm shift in protein science. Many disordered proteins have regions that can transform from a disordered state to an ordered. Those regions are called protean segments. Many intrinsically disordered proteins are involved in diseases, including Alzheimer's disease, Parkinson's disease and Down's syndrome, which makes them prime targets for medical research. As protean segments often are the functional part of the proteins, it is of great importance to identify those regions. This report presents Proteus, a new predictor for protean segments. The predictor uses Random Forest (a decision tree ensemble classifier) and is trained on features derived from amino acid sequence and conservation data. Proteus compares favourably to state of the art predictors and performs better than the competition on all four metrics: precision, recall, F1 and MCC. The report also looks at the differences between protean and non-protean regions and how they differ between the two datasets that were used to train the predictor.
56

Degradation mechanisms of TTP/TIS11 proteins, major effectors of the AU-rich element-mediated mRNA decay in eukaryotes

Vo Ngoc, Long 25 September 2014 (has links)
Regulation of gene expression occurs at several levels in a cell. While control of transcription is often viewed as the main source of regulation, it is now clear that post-transcriptional processes are essential to fine-tune protein availability. The presence of AU-rich elements (ARE) in the 3’ untranslated region (3’UTR) of many important mRNAs exemplifies one such process. AREs alter the mRNA translation or degradation status by recruiting ARE-binding proteins (ARE-BP). ARE-BPs of the TTP/TIS11 family bind to their cognate ARE-RNAs using their conserved tandem zinc-finger domain and induce rapid decay of their targets. This allows for proper regulation of cell proliferation, cell death and inflammation. In this regard, TTP/TIS11 are main regulators of gene expression, and as such are put under strict transcriptional, post-transcriptional as well as several layers of post-translational control.<p>In this work, we aimed at elucidating the degradation mechanisms affecting TTP/TIS11. Using Drosophila as a model, we found that dTIS11 protein turnover is rapid due to continuous degradation by the proteasome. However, proteasomal recognition did not require ubiquitination of dTIS11 as non-ubiquitinable mutants were efficiently degraded by the proteasome. In addition, dTIS11 was digested by the 20S proteasome that lacks ubiquitin-recognition domains. Our results further indicate that intrinsically disordered regions (IDR) in dTIS11 may be responsible for proteasomal recognition. In fact, dTIS11 is predicted as disordered and possesses the main characteristics of intrinsically disordered proteins (IDP). We also identified dTIS11 N- and C-terminal domains as functional signals for degradation, potentially due to their destructuration. This ubiquitination-independent, disorder-dependent degradation process is conserved throughout evolution as dTIS11 mammalian counterpart, TTP, undergoes the same degradation by default pathway. In addition, we established that phosphorylation prevents degradation of TTP/TIS11 by the proteasome. <p>Together, our results pinpoint a new essential characteristic for TTP/TIS11 that may redefine the identity of these proteins. In addition, we unraveled a novel and conserved mechanism of regulation of TTP/TIS11. This control is essential for cell physiology as defects in this process can lead to defects in the inflammatory response, increased radiation-induced lung toxicity and tumorigenesis.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
57

Exploration par résonance magnétique de l'espace conformationnel et de la dynamique du facteur de transcription partiellement désordonné Engrailed-2 / The conformational space and dynamics of the partially disordered transcription factor engrailed-2 explored with magnetic resonance

Khan, Shahid Nawaz 12 March 2015 (has links)
Les protéines intrinsèquement désordonnées (IDP), dépourvues d’une structure rigide et stable, constituent une classe de protéines diverses et fonctionnellement importantes. La résonance magnétique nucléaire (RMN) est une technique spectroscopique bien établie pour caractériser les propriétés conformationnelles et dynamiques des IDP avec une résolution atomique. L’espace conformationnel, en général large et varié, des IPD en fait une cible difficile pour la biologie structurale dont le but est de déterminer avec précision et exactitude les propriétés structurales, dynamique et physico-chimiques qui sous-tendent la fonction des macromolécules biologiques. Ce manuscrit présente une étude biophysique détaillée de la région intrinsèquement désordonnée (IDR) du facteur de transcription Engrailed-2, avant tout par RMN. Après une présentation de cette homéoprotéine, nous décrivons les protocoles d’expression et de purification de cette protéine isotopiquement marquée. Nous introduisons ensuite une nouvelle approche pour la caractérisation des mouvements pico- et nanoseconde des protéines intrinsèquement désordonnées à partir de données de relaxation des spins nucléaires enregistrées à plusieurs champs magnétiques. Les effets de relaxation paramagnétique (PRE) ont été utilisés pour identifier des interactions transitoires entre la région désordonnée et l’homéodomaine d’Engrailed-2. L’interaction d’Engrailed-2 avec l’ADN a été étudiée en détail en utilisant l’anisotropie de fluorescence sur une série de constructions de la protéine, afin de mettre en lumière le rôle de la partie désordonnée dans l’interaction avec l’ADN. Nous avons également employé la résonance paramagnétique électronique pour tenter de détecter une interaction potentielle entre le noyau hydrophobe de l’hexapeptide dans la région désordonnée et l’homéodomaine. Les couplages dipolaires résiduels (RDC) dans les paires 1H-15N, Cα-Hα et Cα-C′ ont également été mesurés sur des échantillons d’Engrailed en milieu anisotrope. Ces données seront essentielles pour reconstituer l’espace conformationnel d’Engrailed 2. L’ensemble des approches présentées a permis de constituer un socle solide de connaissances qui permettent de mieux comprendre les propriétés conformationnelles, dynamiques et fonctionnelles de l’IDR d’Engrailed-2. / Intrinsically Disordered Proteins (IDPs), which lack a stable rigid structure constitute a large and functionally important class of proteins. Nuclear Magnetic Resonance (NMR) is a well-established technique to characterize the structural and dynamical features of IDPs at atomic resolution. The broad conformational space of IDPs makes them challenging targets for structural biology to define their precise structural features and motions, the physical and chemical properties that underlie their biological functions. The present thesis establishes biophysical investigation of the disordered region of the transcription factor Engrailed-2 (13.5 kDa) primarily by NMR. After describing the protocol of expression and purification of the isotopically labeled protein, we present a novel approach to characterize the pico – nano second motions in IDPs using nuclear spin relaxation data at multiple fields. Paramagnetic Relaxation Enhancements (PREs) are used to identify transient long-range interactions between the disordered region and the folded homeodomain of Engrailed-2. Binding to DNA was studied by fluorescence anisotropy and highlights the role of the disordered region in the DNA binding. We used Electron Paramagnetic Resonance (EPR) to probe the potential interaction between the hydrophobic cluster (hexapeptide) in the disordered region and the homeodomain. The one-bond 1H-15N, Cα-Hα and Cα-C′ residual dipolar couplings (RDCs) measured for Engrailed-2 provide important constraints for the refinement of the conformational space of Engrailed_2. All these approaches provide valuable insights in understanding the structural, dynamical and functional properties of this IDP.
58

Une région intrinsèquement désordonnée dans OSBP contrôle la géometrie et la dynamique du site de contact membranaire / An intrinsically disordered region of OSBP controls membrane contact site geometry and dynamics

Jamecna, Denisa 12 December 2018 (has links)
La protéine OSBP est un transporteur de lipides qui régule la distribution cellulaire du cholestérol. OSBP comprend un domaine PH, deux séquences « coiled coil », un motif FFAT (deux phénylalanines dans un environement acide), et un domaine de liaison de lipides (ORD) à son extrémité C-terminale. Le domaine PH interagit avec le PI(4)P et la petite protéine G Arf1-GTP au niveau du Golgi, alors que le motif FFAT interagit avec la protéine VAP-A, résidente du réticulum endoplasmique (RE). En liant simultanément tous ces déterminants, OSBP stabilise des sites de contact membranaire entre RE et Golgi, permettant ainsi un contre-échange cholestérol / PI(4)P par l'ORD. OSBP contient également une longue séquence N-terminale d’environ 80 aa, intrinsèquement désordonnée, composée principalement de glycine, proline et d'alanine. Nous démontrons que la présence de ce N-terminus désordonné augmente le rayon de Stoke de OSBP tronquée du domaine ORD, et limite sa densité d’association sur la membrane portant le PI(4)P. La protéine dépourvue du N terminus favorise l'agrégation symétrique des liposomes PI(4)P (mimant la membrane du Golgi) par les deux domaines PH du dimère OSBP, alors que la présence de la séquence désordonnée empêche cette association symétrique. De même, nous observons que la distribution d’OSBP sur la membrane de vésicules unilamellaires géantes (GUV) varie selon la présence ou l'absence du N-terminus. En présence de la séquence désordonnée, la protéine est répartie de manière homogène sur toute la surface du GUV, alors que la protéine sans N-terminal a tendance à s'accumuler à l'interface entre deux GUV de type Golgi. Cette accumulation locale ralentit fortement la mobilité de la protéine à l’interface. Un effet similaire du N-terminal sur la dynamique des protéines est observé lorsque l’association de membranes de type ER et Golgi est assuré par des protéines monomériques (dépourvue du coiled coil) en présence de Vap-A. Les résultats de nos expériences in vitro ont été confirmés en cellules vivantes, où la séquence intrinsèquement désordonnée contrôle le recrutement d’OSBP sur les membranes Golgiennes, sa mobilité et sa dynamique d’activité au cours des cycles de transfert de lipides. La plupart des protéines de la famille d’OSBP contiennent des séquences N-terminales de faible complexité, suggérant un mécanisme général de régulation. / Oxysterol binding protein (OSBP) is a lipid transfer protein that regulates cholesterol distribution in cell membranes. OSBP consists of a pleckstrin homology (PH) domain, two coiled-coils, a “two phenylalanines in acidic tract” (FFAT) motif and a C-terminal lipid binding OSBP-Related Domain (ORD). The PH domain recognizes PI(4)P and small G protein Arf1-GTP at the Golgi, whereas the FFAT motif interacts with the ER-resident protein VAP-A. By binding all these determinants simultaneously, OSBP creates membrane contact sites between ER and Golgi, allowing the counter-transport of cholesterol and PI(4)P by the ORD. OSBP also contains an intrinsically disordered ~80 aa long N-terminal sequence, composed mostly of glycine, proline and alanine. We demonstrate that the presence of disordered N-terminus increases the Stoke’s radius of OSBP truncated proteins and limits their density and saturation level on PI(4)P-containing membrane. The N-terminus also prevents the two PH domains of OSBP dimer to symmetrically tether two PI(4)P-containing (Golgi-like) liposomes, whereas protein lacking the disordered sequence promotes symmetrical liposome aggregation. Similarly, we observe a difference in OSBP membrane distribution on tethered giant unilamellar vesicles (GUVs), based on the presence/absence of N-terminus. Protein with disordered sequence is homogeneously distributed all over the GUV surface, whereas protein without N-terminus tends to accumulate at the interface between two PI(4)P-containing GUVs. This protein accumulation leads to local overcrowding, which is reflected by slow in-plane diffusion. The effect of N-terminus is also manifested in monomeric OSBPderived proteins that tether ER-like and Golgi-like membranes in the presence of VAP-A. Findings from our in vitro experiments are confirmed in living cells, where N-terminus controls the recruitment of OSBP on Golgi membranes, its motility and the on-and-off dynamics during lipid transfer cycles. Most OSBP-related proteins contain low complexity N-terminal sequences, suggesting a general effect.
59

Étude théorique de peptides amyloidogènes : Ensemble conformationnel, oligomérisation et inhibition par des ligands peptidomimétiques / Theoretical Study of Amyloidogenic Peptide : Conformational Ensemble, Oligomerization and Inhibition by Peptidomimetic Ligands

Tran, Thi Thuy Linh 15 December 2016 (has links)
De nombreuses protéines associées aux maladies neurodégénératives humaines sont intrinsèquement désordonnées. Ce sont des protéines qui sont dépourvues de structure tertiaire ou secondaire stable dans des conditions physiologiques. Plus précisément, les protéines intrinsèquement désordonnées (IDPs) subissent diverses changements conformationnels entre la pelote aléatoire, des conformations hélicoïdales et des structures en feuillet-β, ces deux dernières étant généralement impliquées dans la reconnaissance protéine-protéine. Parmi une vingtaine de peptides amyloïdogènes connus liés aux maladies dégénératives humaines, notre étude porte sur deux protéines désordonnées: le peptide Amyloïde-β (Aβ) associé à la maladie d'Alzheimer et l'Islet Amyloid Polypeptide (IAPP) impliqué dans le diabète de type II. Aβ possède deux alloformes courants de 40 et 42 résidus, tandis que IAPP est une hormone peptidique de 37 résidus. Les agrégats de Aβ sont toxiques pour les cellules du cerveau, tandis que la fibrillisation de IAPP affecte les cellules-β du pancréas. Le mécanisme d'agrégation de ces deux peptides reste encore mal connu, mais il a été proposé qu’en solution, ces peptides visitent différentes conformations, l'une d'entre elles étant riche en feuillets-β. Cela conduirait à l’oligomérisation de ces peptides, par le biais d’interactions feuillet-β / feuillet-β et, éventuellement, à la formation de fibrilles. Le but de notre étude est de mieux caractériser la dynamique conformationnelle de ces deux peptides, dans leur forme monomérique et oligomérique. Comprendre les premières étapes de leur agrégation est crucial pour le développement de nouvelles molécules thérapeutiques efficaces contre ces protéines amyloïdes. / Many proteins associated with human neurodegenerative diseases are intrinsically disordered. They are proteins which lack stable tertiary or secondary structure under physiological conditions. More specifically, intrinsically disordered proteins (IDPs) undergo various structural conversions between random coil, helical conformations and β-strand structures, these two latter being generally involved in protein-protein recognition. Among about twenty known amyloidogenic peptides related to human degenerative diseases, we focus our study on two disordered proteins: the Amyloid-β peptide (Aβ) associated to the Alzheimer’s disease and the Islet Amyloid Polypeptide (IAPP) involved in type II diabetes. Aβ has two common alloforms of 40 and 42 residues in length, meanwhile IAPP is a 37-residues peptide hormone. Aggregates of Aβ are toxic to the brain cells, meanwhile IAPP fibrillization affects the pancreatic β-cells. The aggregation mechanism of these two peptides is not known in detail, but it was proposed that in solution, these peptides visit various conformations, one of them being rich in β-strands. This would lead to peptide oligomerization, through β-strand / β-strand interactions and eventually to the fibril formation. The aim of our study is to provide insights into the conformational dynamics of these two peptides in monomeric and oligomeric forms. Understanding the early steps of their aggregation is crucial for the development of new effective therapeutic molecules against these amyloid proteins.De nombreuses protéines associées aux maladies neurodégénératives humaines sont intrinsèquement désordonnées. Ce sont des protéines qui sont dépourvues de structure tertiaire ou secondaire stable dans des conditions physiologiques. Plus précisément, les protéines intrinsèquement désordonnées (IDPs) subissent diverses changements conformationnels entre la pelote aléatoire, des conformations hélicoïdales et des structures en feuillet-β, ces deux dernières étant généralement impliquées dans la reconnaissance protéine-protéine. Parmi une vingtaine de peptides amyloïdogènes connus liés aux maladies dégénératives humaines, notre étude porte sur deux protéines désordonnées: le peptide Amyloïde-β (Aβ) associé à la maladie d'Alzheimer et l'Islet Amyloid Polypeptide (IAPP) impliqué dans le diabète de type II. Aβ possède deux alloformes courants de 40 et 42 résidus, tandis que IAPP est une hormone peptidique de 37 résidus. Les agrégats de Aβ sont toxiques pour les cellules du cerveau, tandis que la fibrillisation de IAPP affecte les cellules-β du pancréas. Le mécanisme d'agrégation de ces deux peptides reste encore mal connu, mais il a été proposé qu’en solution, ces peptides visitent différentes conformations, l'une d'entre elles étant riche en feuillets-β. Cela conduirait à l’oligomérisation de ces peptides, par le biais d’interactions feuillet-β / feuillet-β et, éventuellement, à la formation de fibrilles. Le but de notre étude est de mieux caractériser la dynamique conformationnelle de ces deux peptides, dans leur forme monomérique et oligomérique. Comprendre les premières étapes de leur agrégation est crucial pour le développement de nouvelles molécules thérapeutiques efficaces contre ces protéines amyloïdes.
60

Intrinsically disordered proteins in molecular recognition and structural proteomics

Oldfield, Christopher John 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intrinsically disordered proteins (IDPs) are abundant in nature, being more prevalent in the proteomes of eukaryotes than those of bacteria or archaea. As introduced in Chapter I, these proteins, or portions of these proteins, lack stable equilibrium structures and instead have dynamic conformations that vary over time and population. Despite the lack of preformed structure, IDPs carry out many and varied molecular functions and participate in vital biological pathways. In particular, IDPs play important roles in cellular signaling that is, in part, enabled by the ability of IDPs to mediate molecular recognition. In Chapter II, the role of intrinsic disorder in molecular recognition is examined through two example IDPs: p53 and 14-3-3. The p53 protein uses intrinsically disordered regions at its N- and C-termini to interact with a large number of partners, often using the same residues. The 14-3-3 protein is a structured domain that uses the same binding site to recognize multiple intrinsically disordered partners. Examination of the structural details of these interactions highlights the importance of intrinsic disorder and induced fit in molecular recognition. More generally, many intrinsically disordered regions that mediate interactions share similar features that are identifiable from protein sequence. Chapter IV reviews several models of IDP mediated protein-protein interactions that use completely different parameterizations. Each model has its relative strengths in identifying novel interaction regions, and all suggest that IDP mediated interactions are common in nature. In addition to the biologic importance of IDPs, they are also practically important in the structural study of proteins. The presence of intrinsic disordered regions can inhibit crystallization and solution NMR studies of otherwise well-structured proteins. This problem is compounded in the context of high throughput structure determination. In Chapter III, the effect of IDPs on structure determination by X-ray crystallography is examined. It is found that protein crystals are intolerant of intrinsic disorder by examining existing crystal structures from the PDB. A retrospective analysis of Protein Structure Initiative data indicates that prediction of intrinsic disorder may be useful in the prioritization and improvement of targets for structure determination.

Page generated in 0.1244 seconds