• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 182
  • 80
  • 65
  • 47
  • 26
  • 14
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 528
  • 184
  • 138
  • 136
  • 117
  • 109
  • 83
  • 82
  • 76
  • 74
  • 73
  • 70
  • 69
  • 62
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

High-Frequency Quasi-Single-Stage (QSS) Isolated AC-DC and DC-AC Power Conversion

Wang, Kunrong 11 November 1998 (has links)
The generic concept of quasi-single-stage (QSS) power conversion topology for ac-dc rectification and dc-ac inversion is proposed. The topology is reached by direct cascading and synchronized switching of two variety of buck or two variety of boost switching networks. The family of QSS power converters feature single-stage power processing without a dc-link low-pass filter, a unidirectional pulsating dc-link voltage, soft-switching capability with minimal extra commutation circuitry, simple PWM control, and high efficiency and reliability. A new soft-switched single-phase QSS bi-directional inverter/rectifier (charger) topology is derived based on the QSS power conversion concept. A simple active voltage clamp branch is used to clamp the otherwise high transient voltage on the current-fed ac side, and at the same time, to achieve zero-voltage-switching (ZVS) for the switches in the output side bridge. Seamless four-quadrant operation in the inverter mode, and rectifier operation with unity power factor in the charger (rectifier) mode are realized with the proposed uni-polar center-aligned PWM scheme. Single-stage power conversion, standard half-bridge connection of devices, soft-switching for all the power devices, low conduction loss, simple center-aligned PWM control, and high reliability and efficiency are among its salient features. Experimental results on a 3 kVA bi-directional inverter/rectifier prototype validate the reliable operation of the circuit. Other single-phase and three-phase QSS bi-directional inverters/rectifiers can be easily derived as topological extensions of the basic QSS bi-directional inverter/rectifier. A new QSS isolated three-phase zero-voltage/zero-current-switching (ZVZCS) buck PWM rectifier for high-power off-line applications is also proposed. It consists of a three-phase buck bridge switching under zero current and a phase-shift-controlled full-bridge with ZVZCS, while no intermediate dc-link is involved. Input power and displacement factor control, input current shaping, tight output voltage regulation, high-frequency transformer isolation, and soft-switching for all the power devices are realized in a unified single stage. Because of ZVZCS and single-stage power conversion, it can operate at high switching frequency while maintaining reliable operation and achieving higher efficiency than standard two-stage approaches. A family of isolated ZVZCS buck rectifiers are obtained by incorporating various ZVZCS schemes for full-bridge dc-dc converters into the basic QSS isolated buck rectifier topology. Experimental and simulation results substantiate the reliable operation and high efficiency of selected topologies. The concept of charge control (or instantaneous average current control) of three-phase buck PWM rectifiers is introduced. It controls precisely the average input phase currents to track the input phase voltages by sensing and integrating only the dc rail current, realizes six-step PWM, and features simple implementation, fast dynamic response, excellent noise immunity, and is easy to realize with analog circuitry or to integrate. One particular merit of the scheme is its capability to correct any duty-cycle distortion incurred on only one of the two active duty-cycles which often happens in the soft-switched buck rectifiers, another merit is the smooth transition of the input currents between the 60o sectors. Simulation and preliminary experimental results show that smooth operations and high quality sinusoidal input currents in the full line cycle are achieved with the control scheme. / Ph. D.
292

PCB-Based Heterogeneous Integration of PFC/Inverter

Wang, Shuo 05 April 2023 (has links)
State-of-the-art silicon-based power supplies have reached a point of maturity in performance. Efficiency, power density, and cost are major trade-offs involved in further improvements. Most products are custom designed with significant non-recurrent engineering and manufacturing processes that are labor intensive. In particular, conventional magnetic components, including transformers and inductors, have largely remained the same for the past five decades. Those large and bulky magnetic components are major roadblocks toward an automated manufacturing process. In addition, there is no specific approach to reduce electromagnetic interference (EMI) in conventional practices. In certain cases, EMI filter design even requires a trial-and-error process. With recent advances in wide-bandgap (WBG) power semiconductor devices, namely, SiC and GaN, we have witnessed significant improvements in efficiency and power density, compared to their silicon counterparts. In a power factor correction (PFC) rectifier/inverter, the totem-pole configuration with critical conduction mode (CRM) operation to realize zero-voltage switching (ZVS) is deemed most desirable for a switching frequency 10 times higher than current practice. With a significantly higher operating frequency, the integration of inductors with embedded windings in the printed circuit board (PCB) is feasible. However, a PCB winding-based inductor has a fundamental limitation in terms of its power handling capability. The winding loss is proportional to the magnetomotive force (MMF), which is Ni. That is to say, with the number of layers (turns) and currents increased, winding loss is increased nonlinearly. Furthermore, for a large-size planar inductor, flux distribution is usually non-uniform, resulting in dramatically increased hysteresis loss and eddy loss. Thus, current designs are challenged by the capability to increase their power range. To address those issues, a modular building block approach is proposed in this dissertation. A planar PCB inductor is formed by an array of pillars that are integrated into one magnetic core, where each pillar handles roughly 750 W of power. The winding loss is reduced by limiting the number of turns for each pillar. The core loss is minimized with a proposed planar magnetic structure where rather uniformly distributed fluxes were observed in the plates. The proposed approach has a similar loss to a conventional litz wire-based design but features a higher power density and can be easily assembled in automation. A 3 kW high frequency PFC converter with 99% efficiency is demonstrated as an example. Furthermore, PCB-based designs up to 6 kW are provided. Another challenge in a WBG-based PFC/inverter is the high common-mode (CM) noises associated with the high dv/dt of the WBG devices. Symmetry and cancellation techniques are often employed to suppress CM noises in switching power converters. Meanwhile, shielding technique has been demonstrated to effectively suppress CM noises in an isolated converter with PCB-based transformer design. However, for non-isolated converters, such as PFC circuits, none of the techniques mentioned above are deemed applicable or justifiable. Recently, the balance technique has been demonstrated to effectively suppress CM noises up to a point where the parasitic ringing between the inductor and its winding capacitor is observed. This dissertation presents an improved balance technique in a PCB-based coupled inductor design that compensates for the detrimental effect of the interwinding capacitors. A CM noise model is established to simplify the convoluted couplings into a decoupled representation so as to illustrate the necessary conditions for realizing a balanced network. In the given 1 kW PFC example, CM noise suppression is effective in the frequency range of interest up to 30 MHz. The parasitic oscillation of inductors, known to be detrimental for CM noise reduction, is circumvented with the improved magnetic structure. By applying the balance technique to a PFC converter and the shielding technique to an LLC DC/DC converter, significant noise reductions were realized. This provides the opportunity to use a simple one-stage EMI filter to achieve the required EMI noise attenuation for a server power supply. This dissertation further offers an in-depth study on reducing the unwanted near-field couplings between the CM/DM inductors and DM filter capacitors, as well as unwanted self-parasitics such as the ESL of the DM capacitors. An exhaustive finite element analysis (FEA) and near field measurements are conducted to better understand the effect of frequency on the polarization of the near field due to the displacement current. The knowledge gained in this study enables one to minimize unwanted mutual coupling effects by means of physical placement of these filter components. Thus, for the first time, a single-stage EMI filter is demonstrated to meet the EMI standard in an off-line 1 kW, 12 V server power supply. With the academic contributions in this dissertation, a PCB winding-based inductor can be successfully applied to a high-frequency PFC/inverter to achieve high efficiency, high power density, automation in manufacturing, lower EMI, and lower cost. Suffice it to say, the proposed approach enables a paradigm shift in the designing and manufacturing of a PFC/inverter for the next generation of power supplies. / Doctor of Philosophy / State-of-the-art silicon device-based switching power supplies have reached a point of maturity in performance. Efficiency, power density, and cost are major trade-offs involved in performance improvements. Most products are custom designed, requiring significant non-recurrent engineering and labor-intensive manufacturing processes. In particular, conventional magnetic components, including transformers and inductors, have largely remained the same for the past five decades. Those large and bulky magnetic components are major roadblocks toward an automated manufacturing process. In addition, there is no specific approach to reduce electromagnetic interference (EMI) in conventional practices. In consequence, a large multi-stage EMI filter is usually adopted between the power converter and the grid to reduce the EMI noise. It generally occupies 1/4-1/3 of the total converter volume. In certain cases, EMI filter design even requires a trial-and-error process. Suffice it to say, EMI is still regarded as both science and art. With recent advances in wide-bandgap (WBG) power semiconductor devices, namely, SiC and GaN, we have witnessed significant improvements in efficiency and power density, compared to their silicon counterparts. With GaN devices, the switching frequency of a PFC converter is able to be increased by 10 times compared to the state-of-the-art design without compromising efficiency. With a significantly higher operating frequency, the integration of inductors with embedded windings in the printed circuit board (PCB) is feasible. However, the state-of-the-art PCB winding-based inductor has a fundamental limitation in power range. Its winding loss and core loss increase dramatically in high powers. To address this issue, a modular building block approach is proposed in this dissertation. A planar PCB inductor is formed by an array of pillars that are integrated into one magnetic core, where each pillar handles roughly 750 W of power. The winding loss is reduced by limiting the number of turns for each pillar. The core loss is minimized with a proposed planar magnetic structure where rather uniformly distributed fluxes have been observed in the magnetic core plates. A 3 kW high-frequency PFC converter with a 99% peak efficiency is demonstrated as an example. Furthermore, PCB-based designs up to 6 kW are provided. Another challenge in a WBG-based PFC/inverter is the high common-mode (CM) noises caused by the high switching speed of the WBG devices. Symmetry and cancellation techniques are often employed to suppress CM noises in switching power converters. Meanwhile, shielding technique has been demonstrated to effectively suppress CM noises in an isolated converter with PCB-based transformer. However, for non-isolated converters, such as PFC circuits, none of the techniques mentioned above are deemed applicable or justifiable. Recently, the balance technique has been demonstrated to effectively suppress CM noises up to several MHz. However, the CM noise reduction is not effective beyond that. This dissertation presents an improved balance technique in a PCB-based coupled inductor to circumvent the limits. In the given 1 kW PFC example, CM noise suppression is effective in the frequency range of interest up to 30 MHz. By applying the balance technique to a PFC converter and the shielding technique to an LLC DC/DC converter, significant noise reductions were realized. This provides the opportunity to use a simple one-stage EMI filter to achieve the required EMI noise attenuation for a server power supply. It features a smaller volume compared to a conventional multi-stage filter. To further enhance the filter's performance at high frequencies, an exhaustive finite element analysis and near field measurements are conducted to better understand the effect of frequency on the polarization of the near field due to the displacement current. The knowledge gained in this study enables one to minimize unwanted mutual coupling effects through physical placement of these filter components. Several approaches for improving the filter performance at high frequency are conducted. With these approaches applied, a single-stage filter is demonstrated in an off-line 1 kW, 12 V server power supply. Thus, for the first time, a single-stage EMI filter can be contemplated to meet the EMI standard in server power supplies. With the academic contributions in this dissertation, a PCB-winding based inductor can be successfully applied to a high-frequency PFC/inverter to achieve high efficiency, high power density, automation in manufacturing, lower EMI, and lower cost. Suffice it to say, the proposed approach in this work enables a paradigm shift in the designing and manufacturing of a PFC/inverter for the next generation of power supplies.
293

Control, Analysis, and Design of SiC-Based High-Frequency Soft-Switching Three-Phase Inverter/Rectifier

Son, Gibong 01 November 2022 (has links)
This dissertation presents control, analysis, and design of silicon carbide (SiC)-based critical conduction mode (CRM) high-frequency soft-switching three-phase ac-dc converters (inverter and rectifier). The soft-switching technique with SiC devices grounded in CRM makes the operation of the ac-dc converter at hundreds of kHz possible while maintaining high efficiency with high power density. This is beneficial for rapidly growing fields such as electric vehicle charging, photovoltaic (PV) systems, and uninterruptable power supplies, etc. However, for the soft-switching technique to be practically adopted to real products in the markets, there are a lot of challenges to overcome. In this dissertation, four types of the challenges are carefully studied and discussed to address them. First, the grid-tied inverters used for distributed energy resources, such as PV systems, must continue operating to deliver power to the grid, when it faces flawed grid conditions such as voltage drop and voltage rise. During abnormal grid conditions, delivering constant active power from the inverter to the grid is essential to avoid large voltage ripples on the dc side because it could trigger over-voltage protection or harm the circuitries, eventually shutting down the inverter. Hence, in such cases, unbalanced ac currents need to be injected into the grid. When the grid voltages and the ac currents are not balanced, there is a chance for the CRM soft-switching inverter to lose its soft-switching capability. Continuous conduction mode operation emerges, causing hard-switching where discontinuous conduction mode (DCM) operation is expected. This leads to huge turn-on loss and high dv/dt noise at the active switch's turn-on moment. To eradicate the hard-switching problem, two improved modulation schemes are developed; one with off-time extension in the CRM phase, the other by skipping switching pulses in the DCM phase. The DCM pulse skipping is applied for a variety of grid imbalance cases, and it is proven that it can be a generalized solution for any kinds of unbalanced grid conditions. Second, the CRM soft-switching scheme with 2-channel interleaving achieves high efficiency at heavy load. Nevertheless, the efficiency plunges as the output load is reduced. This is not suitable for PV inverters, which take account of light load efficiency in terms of "weighted efficiency". Small inductor currents at light load cause the switching frequency to soar because of its CRM-based operation characteristic, causing large switching loss. To increase the inductor current dealt with by the first channel, a phase shedding control is proposed. Gate signals for the second channel are not excited, increasing the first channel's inductor current, thus cutting down the first channel's switching frequency. To prevent the unwanted circulating current formed by shared zero-sequence voltage in the paralleled structure, only two phases in the second channel working in high frequency are shed. The proposed phase shedding control achieves a 0.5 to 3.9 % efficiency improvement with light loads. Third, due to the usage of SiC devices, high dv/dt generated at switching nodes over the system parasitic capacitance causes substantial common mode (CM) noise compared to that with Si devices. In this case, a balance technique with PCB winding inductors can effectively reduce the CM noise. First, winding interleaving structure is selected to minimize the eddy current loss in the windings. But the interwinding capacitance caused by the winding interleaving structure aggravates the CM noise. Impact of the interwinding capacitance on the CM noise is analyzed with a new inductor model containing the interwinding capacitance. Then, finally, a novel inductor structure is proposed to remove the interwinding capacitance and to improve the CM noise reduction performance. The soft-switching ac-dc converter built with the final PCB magnetics features almost similar efficiency compared to that with litz-wire inductor and 14 to 18 dB CM noise reduction up to 15 MHz. Lastly, the soft-switching technique is extended to inverters in standalone mode. To meet tight ac voltage total harmonic distortion requirements, a current control in dq-frame is introduced. As for the ac voltage regulation at no-load, on top of the improved phase shedding control, a frequency limiting with fixed frequency DCM method is applied to prevent excessive increase in the switching frequency. Then, how to deal with short-circuit at the output load is investigated. Since the soft-switching modulation violates inductor voltage-second balance during the short-circuit, the modulation method is switched to a conventional sinusoidal PWM at fixed frequency. It is concluded that all the additional requirements for the standalone inverters can be satisfied by the introduced control strategies. / Doctor of Philosophy / The world is facing an unprecedented weather crisis. Global warming is getting more severe because of excessive amount of carbon emission. In an effort to overcome this crisis, paradigm of energy and lifestyle of people have changed. Penetration of distributed energy resources (DERs) such as wind turbines, and photovoltaic systems has been dramatically increased. Instead of internal combustion engine vehicles (EVs), electric vehicles hit the mainstream. In these changes, power electronics plays a critical role as the key element of the systems. Especially, three-phase inverter/rectifiers are essential parts in such applications. Most important aspects of the three-phase inverter/rectifier are efficiency and power density. In the past decades, Silicon (Si) power devices were mostly used for the systems and the technology based on Si has almost reached to its physical limits. The switching frequency of Si-based inverter/rectifier is limited below 20 – 30 kHz to reduce switching loss. This impedes high power density due to bulky passive components such as inductors and capacitors. Nowadays, the advent of wideband gap such as Silicon Carbide (SiC) and Gallium Nitride (GaN) power devices gives us a great opportunity to improve the efficiency and the power density with its high switching speed capability, low switching energy and low on-resistance. The SiC power devices are more suitable for DERs and EVs due to higher voltage rating. Using SiC power devices allows to increase inverter/rectifier' switching frequency about five times to have similar efficiency with those based on Si power devices, making the power density high. However, there is still room to push the switching frequency even higher to hundreds of kHz with soft-switching. In this sense, studies on soft-switching techniques for three-phase inverter/rectifier have been intensively conducted. Particularly, soft-switching techniques based on critical conduction mode (CRM) are regarded as the most promising solutions because it does not have any additional circuits to achieve the soft-switching, keeping the system as straightforward as possible. However, most of the studies for the CRM-based soft-switching three-phase inverter/rectifier mainly focus on limited occasions such as ideal operation conditions. For this technique to be widely used and adopted in industry, more practical cases for the systems need to be studied. In this dissertation, the soft-switching three-phase inverter/rectifier under diverse situations are investigated in depth. First, behavior of the soft-switching inverter/rectifier under unbalanced grid conditions are analyzed and control methods are developed to maintain its soft-switching capability. Second, how to improve light load efficiency is explored. Circulating current issue for the light load efficiency improvement is analyzed and a control method is proposed to eliminate the circulating current. Third, a design methodology and considerations of inductors based on PCB magnetics are discussed to reduce electromagnetic noise and improve system efficiency. Lastly, the soft-switching technique is extended to standalone mode applications dealing with strict voltage regulation, no-load operation, and output short-circuit.
294

A Distributed Digital Control Architecture for Power Electronics Systems

Celanovic, Ivan 25 September 2000 (has links)
This thesis proposes a novel approach to power electronics system design that is based on the open-architecture distributed digital controller and modular power electronics building blocks (PEBBs). The proposed distributed digital controller partitions the controller in three levels of control authority. The power stage controller, designated as hardware manager, is responsible for low-level hardware oriented tasks; the high level controller, designated as applications manager, performs higher-level application-oriented tasks; and the system level controller handles system control and monitoring functions. Communications between the hardware-oriented controller and the higher-level controller are implemented with the previously proposed 125 Mbits/sec daisy-chained fiber optic communication protocol. Real-time control and status data are communicated by means of communication protocol. The distributed controller on the power converter level makes the system open, flexible and simple to use. Furthermore, this work gives an overview and comparison of current state-of-the-art communication protocols for real-time control applications with emphasis on industrial automation and motion control. All of the studied protocols have been considered as local area networks (LAN) for system-level control in power converter systems. The most promising solution has been chosen for the system level communication protocol. This thesis also provides the details of design and implementation of the distributed controller. The design of both the hardware and software components are explained. A 100 kVA three-phase voltage source inverter (VSI) prototype was built and tested using the distributed controller approach to demonstrate the feasibility of the proposed concept. / Master of Science
295

Power Density Optimization of SiC-based DC/AC Converter for High-Speed Electric Machine in More/All-electric Aircraft

Zhao, Xingchen 07 May 2024 (has links)
The increasing shift towards more electric or all electric aircraft urgently necessitates dc/ac converter systems with high power density. Silicon Carbide (SiC) devices, known for their superior performance over traditional silicon-based devices, facilitate this increase in power density. Nonetheless, achieving optimal power density faces challenges due to the unique requirements and conditions of aircraft applications. A primary obstacle is optimizing the topology and parameters of the dc/ac converter system to achieve high power density while adhering to the stringent aerospace EMI standard DO-160 and bearing current limitations. Electric aircraft demand unmatched reliability, necessitating strict control over EMI noise and bearing currents. These considerations significantly impact the selection of topology and parameters to maximize power density. This dissertation assesses how dc voltage, topology, and switching frequency affect component weight, seeking an optimal mix to enhance power density. The methodology and conclusions are validated through a 200-kW motor drive system designed for electric aircraft. Moreover, traditional dc/ac systems are burdened by the weight and space occupied by separate current sensors and short-circuit protection circuits. This work introduces two innovative current sensors that integrate device current sampling with the functionality of traditional shunt resistors, AC hall sensors, and short-circuit protection circuits, thus improving system density and bandwidth. The first sensor, a PCB-based Rogowski coil, integrates with the gate driver and commutation loops, enhancing power density despite challenges in managing CM noise. The second sensor utilizes parasitic inductance in the power loop, with an integrator circuit and an adaptive compensation algorithm correcting errors from parasitic resistance, ensuring high bandwidth accuracy without needing parasitic resistance information. Variable operation conditions from motors pose another challenge, potentially leading to oversized inverters due to uneven loss distribution among switching devices, exacerbated at extreme operating points like motor start-up. This dissertation investigates the loss distribution in multi-level T-Type neutral point clamped (NPC) topology and proposes a novel loss-balance modulation scheme. This scheme ensures even loss distribution across switches, independent of power factor and modulation index, and is applicable to T-type inverters of any level count. Finally, thermal management and insulation at high altitudes present significant challenges. While power devices may be cooled using conventional liquid cooling solutions, components like AC and EMI filters struggle with complex geometries that can create hot spots or high E-field points, complicating filter design for high current applications. A comprehensive design and optimization methodology based on planar heavy-copper PCB design is proposed. By utilizing flexible 2D or 3D E-field shaping and maximizing thermal transfer from copper to ambient, this methodology significantly improves power density and ensures effective heat dissipation and insulation at altitudes up to 50,000 feet. / Doctor of Philosophy / The increasing shift towards more electric or all electric aircraft urgently necessitates dc/ac converter systems with high power density. Silicon Carbide (SiC) devices, known for their superior performance over traditional silicon-based devices, facilitate this increase in power density. Nonetheless, achieving optimal power density faces challenges due to the unique requirements and conditions of aircraft applications. A primary obstacle is optimizing the topology and parameters of the dc/ac converter system to achieve high power density while adhering to the stringent aerospace EMI standard DO-160 and bearing current limitations. Electric aircraft demand unmatched reliability, necessitating strict control over EMI noise and bearing currents. These considerations significantly impact the selection of topology and parameters to maximize power density. This dissertation assesses how dc voltage, topology, and switching frequency affect component weight, seeking an optimal mix to enhance power density. The methodology and conclusions are validated through a 200-kW motor drive system designed for electric aircraft. Moreover, traditional dc/ac systems are burdened by the weight and space occupied by separate current sensors and short-circuit protection circuits. This work introduces two innovative current sensors that integrate device current sampling with the functionality of traditional shunt resistors, AC hall sensors, and short-circuit protection circuits, thus improving system density and bandwidth. The first sensor, a PCB-based Rogowski coil, integrates with the gate driver and commutation loops, enhancing power density despite challenges in managing CM noise. The second sensor utilizes parasitic inductance in the power loop, with an integrator circuit and an adaptive compensation algorithm correcting errors from parasitic resistance, ensuring high bandwidth accuracy without needing parasitic resistance information. Variable operation conditions from motors pose another challenge, potentially leading to oversized inverters due to uneven loss distribution among switching devices, exacerbated at extreme operating points like motor start-up. This dissertation investigates the loss distribution in multi-level T-Type neutral point clamped (NPC) topology and proposes a novel loss-balance modulation scheme. This scheme ensures even loss distribution across switches, independent of power factor and modulation index, and is applicable to T-type inverters of any level count. Finally, thermal management and insulation at high altitudes present significant challenges. While power devices may be cooled using conventional liquid cooling solutions, components like AC and EMI filters struggle with complex geometries that can create hot spots or high E-field points, complicating filter design for high current applications. A comprehensive design and optimization methodology based on planar heavy-copper PCB design is proposed. By utilizing flexible 2D or 3D E-field shaping and maximizing thermal transfer from copper to ambient, this methodology significantly improves power density and ensures effective heat dissipation and insulation at altitudes up to 50,000 feet.
296

Control of Power Conversion Systems for the Intentional Islanding of Distributed Generation Units

Thacker, Timothy Neil 13 January 2006 (has links)
Within the past decade, talk has arisen of shifting the utility grid from centralized, radial sources to a distributed network of sources, also known as distributed generation (DG); in the wake of deregulation, the California energy crisis, and northeastern blackouts. Existing control techniques for DG systems are designed to operate a system either in the connected or disconnected (islanding) mode to the utility; thus not allowing for both modes to be implemented and transitioned between. Existing detection and re-closure algorithms can also be improved upon. Dependent upon the method implemented, detection algorithms can either cause distortions in the output or completely miss a disturbance. The present re-closure process to reconnect to the utility is to completely shutdown and wait five minutes. The proposed methods of this study improve upon existing methods, via simulation and hardware experimentation, for DG systems that can intentionally islanding themselves. The proposed, "switched-mode", control allows for continuous operation of the system during disturbances by transitioning the mode of control to reflect the change in the system mode (grid-connected or islanding). This allows for zero downtimes without detrimental transients. The proposed detection method can sense disturbances that other methods cannot; and within 25 ms (approximately 1.5 line-cycles at 60 Hz). This method is an improvement over other methods because it eliminates the need to purposely distort the outputs to sense a disturbance. The proposed re-closure method is an improvement over the existing method due to the fact that it does not require the system to de-energize before re-synchronizing and reconnecting to the utility. This allows for DGs to continuously supply power to the system without having to shut down. Results show that the system is generally ready to reconnect after 2 to 5 line cycles. / Master of Science
297

Class-E Current Source Power Conversion

Li, Bo 16 September 2024 (has links)
Current source is used in auxiliary power supplies, battery chargers, and LED drivers. The battery chargers are required to provide constant current within a wide output voltage range, similar to LED drivers. The load-independent (LI) Class-E inverter is a promising topology for such applications since it can realize zero-voltage switching (ZVS) within a wide load range. Class-E current source can be achieved by converting constant voltage (CV) Class-E inverter to current source with a trans-susceptance network or using parallel resonant topology. The design and analysis of LI Class-E inverters usually assume a high-Q resonant load tank so that the load current/voltage is sinusoidal. While this is the case in RF applications, it's not required in DC-DC power conversion. Besides, high-Q design leads to high inductance and increased voltage/current stress on the resonant components, increasing converter volume, loss, and cost. This work aims to provide a design guideline for the CC Class-E inverter when significant harmonics are present by reflecting the trade-off between load range and voltage stress, with the help of a modified frequency domain analysis method to eliminate the iteration existing in the time domain analysis. Output current variation and voltage stress can be automatically quantified when circuit parameters vary. Generalized load range contours are obtained to guide the circuit design. With the help of the analysis, a 10-W dual-output Class-E gate power supply is designed with optimized magnetics and reduced isolation capacitance. Compared with CC Class-E based on trans-susceptance network, the parallel resonant CC Class-E inverter has smaller part counts due to its low-order resonant network. However, the current topology suffers from limited maximum output power. In this work, a coupled-inductor based parallel resonant CC Class-E inverter is proposed with more than 2 times maximum power without increasing part counts. / Doctor of Philosophy / Current source is used in auxiliary power supplies, battery chargers, and LED drivers. The battery chargers are required to provide constant current within a wide output voltage range, similar to LED drivers. The load-independent (LI) Class-E inverter is a promising topology for such applications since it can realize zero-voltage switching (ZVS) within a wide load range. This work aims to provide a new design guideline for the CC Class-E inverter when significant harmonics are present by reflecting the trade-off between load range and voltage stress, with the help of a modified frequency domain analysis method to eliminate the iteration existing in the time domain analysis. Output current variation and voltage stress can be automatically quantified when circuit parameters vary. Generalized load range contours are obtained to guide the circuit design. With the help of the analysis, a 10-W dual-output Class-E gate power supply is designed with optimized magnetics and reduced isolation capacitance. Compared with CC Class-E based on trans-susceptance network, the parallel resonant CC Class-E inverter has smaller part counts due to its low-order resonant network. However, the current topology suffers from limited maximum output power. In this work, a coupled-inductor based parallel resonant CC Class-E inverter is proposed with more than 2 times maximum power without increasing part counts.
298

Load Commutated SCR Current Source Inverter Fed Induction Motor Drive With Sinusoidal Motor Voltage And Current

Banerjee, Debmalya 01 July 2008 (has links)
This thesis deals with modeling, simulation and implementation of Load Commutated SCR based current source Inverter (LCI) fed squirrel cage induction motor drive with sinusoidal voltage and sinusoidal current. In the proposed system, the induction motor is fed by an LCI. A three level diode clamped voltage source inverter (VSI) is connected at the motor terminal with ac chokes connected in series with it. The VSI currents are controlled in such a manner that it injects the reactive current demanded by the induction motor and the LCI for successful commutation of the SCRs in the LCI. Additionally, it absorbs the harmonic frequency currents to ensure that the induction motor draws sinusoidal current. As a result, the nature of the motor terminal voltage is also sinusoidal. The concept of load commutation of the SCRs in the LCI feeding an induction motor load is explained with necessary waveforms and phasor diagrams. The necessity of reactive compensation by the active filter connected at the motor terminal for the load commutation of the thyristors, is elaborated with the help of analytical equations and phasor diagrams. The requirement of harmonic compensation by the same active filter to achieve sinusoidal motor current and motor voltage, is also described. Finally, to achieve the aforementioned induction motor drive, the VA ratings of the active filter (VSI) and the CSI with respect to VA rating of the motor, are determined theoretically. The proposed drive scheme is simulated under idealized condition. Simulation results show good steady state and dynamic response of the drive system. Load commutation of the SCRs in the LCI and the sinusoidal profile of motor current and voltage, have been demonstrated. As in LCI fed synchronous motor drives, a special mode of operation is required to run up the induction motor from standstill. As the SCRs of the LCI are load commutated, they need motor terminal voltages for commutation. At standstill these voltages are zero. So, a starting strategy has been proposed and adopted to start the motor with the aid of the current controlled VSI to accelerate until the motor terminal voltages are high enough for the commutation of the SCRs in the LCI. The proposed drive is implemented on an experimental setup in the laboratory. The IGBT based three level diode clamped VSI has been fabricated following the design of the standard module in the laboratory. A generalized digital control platform is also developed using a TMS320F2407A DSP. Two, three phase thyristor bridges with necessary firing pulse circuits have been used as the phase controlled rectifier and the LCI respectively. Appropriate protection scheme for such a drive is developed and adopted to operate the drive. Relevant experimental results are presented. They are observed to be in good agreement with the simulation results. The effect of capacitors connected at the output of the LCI in the commutation process of the SCRs in the LCI is studied and analyzed. From the analysis, it is understood that the capacitors form a parallel resonating pair with filter inductor and the motor leakage inductance, which results in an undesired oscillation in the terminal voltage during each of the commutation intervals leading to commutation failure. So, in the final system, the capacitors are removed to eliminate any chance of commutation failure of the SCRs in the LCI. It is shown by experiment that the commutation of the SCRs takes place reliably in the absence of the capacitors also. The commutation process is studied and analyzed without the capacitors to understand the motor terminal voltage waveform of the experimental results.
299

Jednofázový pulzní měnič DC/AC s digitálním řízením / DC/AC inverter with digital control

Štaffa, Jan January 2009 (has links)
This work is focused on single phase inverters, which are used for the conversion of the direct current to the alternating current and are nowdays used especially in systems of back-up power supply. The specific aim of this work is implementation of design hight power circuit of inverter include calculation of control algorithm. It describes the complete solution of power circuit. Next step is a analysis of problems concerning the digital control with help of signal processor which is used for solution of regulator structure. Check of the design and checkout of control algorithm is made in the form of simulation in the MATLAB Simulink. Debugged program algorithm is subsequently implemented into the signal microprocessor. The work results rate estimation functionality of inverter and solution of control algorithm.
300

2-Level Impedanz-Zwischenkreisinverter für einen Fahrmotor in elektrisch angetriebenen Fahrzeugen

Kottra, Marton 12 January 2016 (has links) (PDF)
Wechselrichter im Antriebsstrang von Elektrofahrzeugen verbinden Batterie und Motor miteinander. Bei konventionellen Wechselrichtern ist die Ständerspannung des Fahrmotors durch die Batteriespannung begrenzt. Dies ist vor allem bei hohen Drehzahlen nachteilig, da hier ein zusätzlicher feldschwächender Strom notwendig ist. Dieser Strom wiederum verursacht zusätzliche Verluste in der Maschine und der Leistungselektronik. Einen alternativen Ansatz bieten hochsetzende Wechselrichter. Die Begrenzung der Ständerspannung durch die Batterie entfällt. In der vorliegenden Diplomarbeit werden zwei hochsetzende Wechselrichter miteinander verglichen. Zunächst wird die Funktionsweise des Wechselrichters mit Hochsetzsteller und des ZSource-Wechselrichters erläutert. Danach werden Bauelemente für beide hochsetzende Wechselrichter ausgewählt. Anschließend werden die Verluste und das thermische Verhalten der ausgewählten Konfigurationen analysiert und mit Matlab simuliert. Abschließend werden der Wechselrichter mit Hochsetzsteller und der Z-Source-Wechselrichter bezüglich der Kriterien Wirkungsgrad, Zuverlässigkeit und Fertigungsaufwand miteinander verglichen. / Inverter in the drive train of electric vehicles connect the battery to the machine. Using conventional inverters, the stator voltage is limited by the battery voltage. This is mainly a disadvantage at a high speed, since an additional field weakening current is needed. This current produces extra losses in the electrical machine and the power electronics. DC/DC boosted inverters offer an alternative solution. A limitation of stator voltage through the battery does not occur. This diploma thesis is comparing two kinds of DC/DC boosted inverters. First the functionality of an inverter with boost converter and that of a Z-Sourceinverter are presented. Afterwards the electrical components for both inverters are chosen and are simulated using Matlab. Finally the results of the simulation are compared with respect to power effciency, reliability of the electrical components and the effort of production.

Page generated in 0.0792 seconds