91 |
Estudo do inversor monofásico NPC T-Type de cinco níveis para processamento de energia solar fotovoltaica / Study of the five level NPC T-Type single phase inverter for solar photovoltaic energy processingSilva, Tiago Lemes da 26 September 2014 (has links)
Made available in DSpace on 2016-12-12T20:27:38Z (GMT). No. of bitstreams: 1
Tiago Lemes.pdf: 2229669 bytes, checksum: 9b9cd44356c6d0002fccf67fe418f52b (MD5)
Previous issue date: 2014-09-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The main subject of this work is the study of a 5 levels T-Type NPC inverter topology, which is applied in photovoltaic energy processing for power generation. The grid power injection is done controlling converter current, which is injected into grid. This work presents equations, component-designs and their validation, which are necessary for the Inverter s power structure implementation. Also inverter modeling and design of implemented controllers are described. Through this study, it
was possible to build a 3 kW prototype, which besides the current control, has a system to balance the differential voltage of bus capacitors. Through the prototype, experimental results were acquired. / O objeto de estudo deste trabalho é a topologia inversora NPC T-Type 5 níveis, aplicada no processamento da energia fotovoltaica, sendo o principal objetivo a geração de energia elétrica por meio do controle da corrente aplicada à rede. Este trabalho apresenta o equacionamento, projeto dos componentes e sua validação, que fazem parte da estrutura de potência do inversor, bem como a sua modelagem e projeto dos controladores implementados. Por intermédio deste estudo foi possível
construir um protótipo com potência nominal de 3 kW, que além do controle da corrente, apresenta uma malha de equilíbrio da tensão diferencial do barramento. Mediante construção desse protótipo, foram extraídos os resultados experimentais.
|
92 |
Comparison Of Single Stage And Two Stage Stage Grid-tie InvertersMansfield, Keith 01 January 2007 (has links)
This thesis compares two methods of designing grid-tie inverters. The first design topology is a traditional two stage approach consisting of an isolated DC-DC converter on the input followed by a high switching frequency SPWM (Sinusoidal Pulse Width Modulation) stage to produce the required low frequency sine wave output. The novel second design approach employs a similar DC-DC input stage capable of being modulated to provide a rectified sine wave output voltage/current waveform. This stage is followed by a simple low frequency switched Unfolding Stage to recreate the required sine wave output. Both of the above designs have advantages and disadvantages depending on operating parameters. The following work will compare the Unfolding Output Stage and the SPWM Output Stage at various power levels and power densities. Input stage topologies are similarly examined in order to determine the best design approach for each output stage under consideration.
|
93 |
Design and Control of a 100 kW SiC-Based Six-Phase Traction Inverter for Electric Vehicle ApplicationsTaha, Wesam January 2023 (has links)
This thesis investigates the feasibility of using Silicon Carbide (SiC)-based multiphase inverters (MPIs) for transportation electrification applications. The research begins with a comprehensive review on the state-of-the-art of MPIs, focusing on voltage source inverters (VSIs) and nine-switch inverters (NSIs), with five-, six-, and nine-phase configurations. The quantitative and qualitative analyses demonstrate that the six-phase VSI is the most promising topology, offering reduced DC-capacitor requirements, lower cabling cost, and higher fault tolerance capability while maintaining the same efficiency and power device count of a three-phase VSI. The feasibility of the SiC-based six-phase inverter is further investigated at the vehicle level, where a vehicle model is developed to study the energy consumption under different drive cycles. The resulting indicate an 8% improvement in vehicle mileage and fuel economy of the SiC-based six-phase inverter compared to its Si-based counterpart.
This thesis also examines the current and voltage stresses on the DC-bus capacitor in two-level six-phase VSIs. The study considers two configurations of load/winding spatial distribution: symmetric and asymmetric. Consequently, analytical formulas for the DC-bus capacitor current and voltage ripples are derived. Furthermore, simple capacitor sizing rules in six-phase VSIs with different load configurations are provided. The accuracy of the derived formulas is verified by simulation and experimental testing, and their boundary conditions are identified. Six-phase VSI supplying symmetric loads was found to yield the smallest capacitor size.
Based on the foregoing technology review and analyses, a holistic design methodology for a 100 kW SiC-based six-phase traction inverter for an electric vehicle application is presented. The proposed methodology considers the device power level, where discrete SiC MOSFETs are utilized, and the DC-capacitor sizing, where a multi-objective optimization algorithm is proposed to find the most suitable capacitor bank. Mechanical and thermal design constraints are also explored to deliver a compact housing with an integrated coolant channel. The resultant inverter design from the proposed electrical-thermal-mechanical design methodology is prototyped and experimentally tested, demonstrating a 7% reduction in DC-capacitor volume and 21% reduction in cabling cost when compared to conventional three-phase inverters of the same volt-ampere rating. The peak power density of the prototype inverter is 70 kW/L, demonstrating a compact design. Besides, the proposed design is benchmarked against commercial six-phase inverter models, whereby the competitiveness of the proposed design is highlighted.
Finally, the unique control aspects of six-phase electric motor drives are investigated to identify suitable controls strategies for various operating conditions. The study places special emphasis on high-speed operation and evaluates several overmodulation techniques. An adaptive flux-weakening control algorithm is also proposed for the six-phase motor drive, which significantly improves the DC-bus voltage utilization of the inverter when used in conjunction with overmodulation.
Overall, this thesis provides a comprehensive study of SiC-based six-phase traction inverters and proposes a holistic design methodology that considers electrical, thermal, and mechanical aspects. The results demonstrate the feasibility and advantages of SiC-based six-phase traction inverters for electric vehicle applications. / Thesis / Doctor of Philosophy (PhD) / Electric cars are continuously challenged to meet regulatory mandates that become stricter by the day. This is driven by the need for a clean, reliable, affordable, and sustainable transportation system. In this research, a novel, more reliable, and cost-effective power control unit (PCU) is proposed. The PCU manages the power flow regulation between the battery and the motor(s). The proposed PCU employs the same number of devices as a traditional counterpart, yet in a more modular architecture that doubles the safety factor compared to the standard design. In fault scenarios where the traditional PCU would fail, the proposed PCU would continue operating at half power, allowing the driver and passengers to reach a safe destination before the car is repaired.
Extensive analyses were undertaken to identify an optimal design in terms of performance, size, and cost. Then, an engineering prototype is constructed and tested on an electric drivetrain testbed. Finally, the prototype is benchmarked against commercial competitors in the market to establish its economical feasibility.
|
94 |
Multi-Branch Current Sensing Based Single Current Sensor Technique for Power Electronic ConvertersCho, Younghoon 05 November 2012 (has links)
A new concept of current sensor reduction technique called multi-branch current sensing technique (MCST) is proposed in this dissertation. In the proposed current sensing method, one more branch currents are simultaneously measured several times in a single switching cycle by using a single current sensor. After that, the current reconstruction algorithm is applied to obtain all phase currents information. Compared to traditional single current sensor techniques (SCSTs), the proposed method samples the output of the current sensor regularly, and the current sensing dead-zone is dramatically reduced. Since the current sampling is performed periodically, its implementation using a digital controller is extremely simple. Moreover, the periodical dead-zone and the dead-zone near the origin of the voltage vector space which have been a big problem in the existing methods can be completely eliminated. Accordingly, there is no need to have a complicated vector reconfiguration or current estimation algorithm. The proposed MCST also takes the advantages of a SCST such as reduced cost and elimination of the sensor gain discrepancy problem in the multiple current sensor method. The fundamental concept, implementation issues, and limitation of the proposed MCST are described based on three-phase systems first. After that, the proposed MCST is adopted to two-phase inverters and multi-phase dc-dc converters with little modifications.
Computer simulations and hardware experiments have been conducted for a three-phase boost converter, a three-phase motor drive system, a two-phase two-leg inverter, a two-phase four-leg inverter with bipolar modulation, a two-phase four-leg inverter with unipolar modulation, and a four-phase dc-dc converter applications. From the simulations and the experimental results, the feasibilities of the proposed method mentioned above are fully verified. / Ph. D.
|
95 |
Efficiency Comparison between Two-Level and T-Type Inverter for 800 V Automotive ApplicationJain, Rishabh January 2022 (has links)
The falling cost of batteries, along with an increasing need to cut emissions, has spurred significant interest in the electrification of vehicles. In addition, as semiconductor devices have evolved, the research for electric vehicles with higher battery voltage has increased. The traction inverter is an important part of the electric power train and can account for a substantial portion of the drive train’s losses. This thesis therefore models, simulates, and studies the losses for a convectional Two-Level (2L) inverter and a Three-Level T-Type (3LT) inverter utilizing Silicon Carbide (SiC) MOSFETs and compares the two inverter topologies in terms of efficiency. The rated power of the inverters is 120 kW at a DC voltage of 800 V. The theoretical basis of SiC MOSFET and its reverse conduction, operation of 2L and 3LT inverter topologies, and Space Vector Pulse Width Modulation (SVPWM) technique are introduced in the initial part of the thesis. To estimate switching and conduction losses, Simulink is used to model and simulate an electric drive system. These estimated losses are then utilized to develop efficiency maps for both topologies over the complete speed-torque range. Based on the efficiency comparison, the 3LT topology outperforms the 2L topology for any requested torque in the medium to the high-speed range, which is typical of highway driving. In the low-speed, high-torque region, which is typical of city driving, the 2L topology is superior. The efficiency of each topology is affected by switching frequency, device junction temperature, and DC-link voltage. However, the comparison reveals that the maximum average difference in efficiency is 0.35%, with the 3LT topology being superior. Finally, the efficiency differences between the two inverter topologies are minimal. As a result, it may be concluded that the two topologies perform similarly. Thus, it can be inferred that comparing the efficiency of the two topologies should not be the sole criterion for selecting which topology should be used for the electric drive. / Den sjunkande kostnaden för batterier, tillsammans med ett ökande behov av att minska utsläppen, har lett till ett stort intresse för elektrifiering av fordon. Dessutom, har utvecklingen av halvledare lett till en ökning inom forskningen av elfordon med högre batterispänning. Traktionsomriktaren är en viktig del av den elektriska drivlinan och kan stå för en stor del av de totala förlusterna i drivlinan. I denna rapport modelleras, simuleras och studeras därför förlusterna i en konventionell omriktare med två nivåer (2L) och en T-typ omriktare med tre nivåer (3LT). Båda topologierna använder kiselkarbid (SiC) MOSFETs i jämförelsen av resultaten med avseende på verkningsgrad. Inverterarnas nominella effekt är 120 kW vid en likspänning på 800 V. Den teoretiska grunden för SiC MOSFET och hur de fungerar, hur 2L- och 3LT-inverterstopologierna fungerar samt tekniken för Space Vector Pulse Width Modulation (SVPWM) presenteras i rapporten. För att uppskatta switch- och ledningsförluster används Simulink för att modellera och simulera det elektriska drivsystemet. De uppskattade förlusterna används sedan för att utveckla verkningsgradskartor för de båda topologierna över hela det operativa området. Baserat på verkningsgradsjämförelsen mellan topologierna så presterar 3LT-topologin bättre än 2L-topologin i driftspunkter i medelhöga till höga hastigheter, vilket är typiskt för motorvägskörning. Vid låga hastigheter med högt vridmoment, vilket är typiskt för stadskörning, är 2L-topologin bättre. Verkningsgraden för de båda topologierna påverkas av switchfrekvensen, halvledarens temperatur samt DC-länkspänning. Jämförelsen visar dock att den största genomsnittliga skillnaden i verkningsgrad mellan de två topologierna är 0,35%, där 3LT-topologin är bättre. Sammanfattningsvis så är skillnaderna i verkningsgrad mellan de två topologierna minimala, vilket innebär att de båda topologierna har liknande prestanda med avseende på verkningsgrad. Man bör därför inte bara ha verkningsgrad som det enda kriteriet vid val av topologi för elektriska drivlinor.
|
96 |
Měnič pro umělou síť 230 V napájený z fotovoltaických panelů / 230 V inverter for isolated mains supplied from solar cellsMichálek, Pavel January 2016 (has links)
In this thesis is presented detail design of power part of DC/DC converter and output inverter. This device will serve for creating an artificial network in a family house where it will be used for supplying selected household appliances which are designed for use in AC network. The converter will be supplied with DC voltage. This tension will be obtained from a system of photovoltaic panels. The output voltage will have alternate character and it will be close to the network voltage 230 V/50 Hz. In the introductory part of thesis are discussed possible topologies of converters and output inverters. Subsequently are designed individual parts of supply inverter. In the final part there are shown waveforms of important values and is given a thesis evaluation.
|
97 |
Control, Design, and Implementation of Quasi Z-source Cascaded H-Bridge InverterAl-Egli, Fares, Mohamed Moumin, Hassan January 2018 (has links)
This report is about control, design and implementation of a low voltage-fed quasi Z-source three-level inverter. The topology has been interesting for photovoltaic-systems due to its ability to boost the incoming voltage without needing an extra switching control. The topology was first simulated in Simulink and later implemented on a full-bridge module to measure the harmonic distortion and estimating the power losses of the inverter. An appropriate control scheme was used to set up a shootthrough and design a three-level inverter. The conclusion for the report is that the quasi Z-source inverter could boost the DC-link voltage in the simulation. But there should be more consideration to the internal resistance of the components for the implementation stage as it gave out a lower output voltage than expected.
|
98 |
High Gain DC-DC and Active Power Decoupling Techniques for Photovoltaic InvertersJanuary 2017 (has links)
abstract: The dissertation encompasses the transformer-less single phase PV inverters for both the string and microinverter applications. Two of the major challenge with such inverters include the presence of high-frequency common mode leakage current and double line frequency power decoupling with reliable capacitors without compromising converter power density. Two solutions are presented in this dissertation: half-bridge voltage swing (HBVS) and dynamic dc link (DDCL) inverters both of which completely eliminates the ground current through topological improvement. In addition, through active power decoupling technique, the capacitance requirement is reduced for both, thus achieving an all film-capacitor based solution with higher reliability. Also both the approaches are capable of supporting a wide range of power factor.
Moreover, wide band-gap devices (both SiC and GaN) are used for implementing their hardware prototypes. It enables the switching frequency to be high without compromising on the converter efficiency. Also it allows a reduced magnetic component size, further enabling a high power density solution, with power density far beyond the state-of-the art solutions.
Additionally, for the transformer-less microinverter application, another challenge is to achieve a very high gain DC-DC stage with a simultaneous high conversion efficiency. An extended duty ratio (EDR) boost converter which is a hybrid of switched capacitors and interleaved inductor technique, has been implemented for this purpose. It offers higher converter efficiency as most of the switches encounter lower voltage stress directly impacting switching loss; the input current being shared among all the interleaved converters (inherent sharing only in a limited duty ratio), the inductor conduction loss is reduced by a factor of the number of phases.
Further, the EDR boost converter has been studied for both discontinuous conduction mode (DCM) operations and operations with wide input/output voltage range in continuous conduction mode (CCM). A current sharing between its interleaved input phases is studied in detail to show that inherent sharing is possible for only in a limited duty ratio span, and modification of the duty ratio scheme is proposed to ensure equal current sharing over all the operating range for 3 phase EDR boost. All the analysis are validated with experimental results. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
99 |
Investigations On Boundary Selection For Switching Frequency Variation Control Of Current Error Space Phasor Based Hysteresis Controllers For Inverter Fed IM DrivesRamchand, Rijil 07 1900 (has links) (PDF)
Current-Controlled Pulse Width Modulated (CC-PWM) Voltage Source Inverters (VSIs) are extensively employed in high performance drives (HPD) because of the considerable advantages offered by them, such as, excellent dynamic response and inherent over-current protection, as compared to the voltage-controlled PWM (VC-PWM) VSIs. Amongst the different types of CC-PWM techniques, hysteresis current controllers offer significant simplicity in implementation. However, conventional type of hysteresis controllers (with independent comparators) suffers from some well-known drawbacks, such as, limit cycle oscillations (especially at lower speeds of operation of machine), overshoot in current error, generation of sub-harmonic components in the current, and random (non-optimum) switching of inverter voltage vectors.
Common problems associated with the conventional, as well as current error space phasor based hysteresis controllers with fixed bands (boundary), are the wide variation of switching frequency in the fundamental output cycle and variation of switching frequency with the change in speed of the load motor. These problems cause increased switching losses in the inverter, non-optimum current ripple, excess harmonics in the load current and subsequent additional machine heating. A continuously varying parabolic boundary for the current error space phasor is proposed previously to get the switching frequency variation pattern of the output voltage of the hysteresis controller based PWM inverter similar to that of voltage controlled space vector PWM (VC SVPWM) based VSI. But the major problem associated with this technique is the requirement of two outer parabolas outside the current error space phasor boundary for the identification of sector change which gives rise to some switching frequency variations in one fundamental cycle and over the entire operating speed range. It also introduces 5th and 7th harmonic components in the voltage causing 5th and 7th harmonic currents in the induction motor. These harmonic currents causes 6th harmonic torque pulsations in the machine. This thesis proposes a new technique which replaces the outer parabolas and uses current errors along orthogonal axes for detecting the sector change, so that a fast and accurate detection of sector change is possible. This makes the voltage harmonic spectrum of the proposed hysteresis controller based inverter exactly matching with that of a constant switching frequency SVPWM based inverter. This technique uses the property that the current error along one of the orthogonal axis changes its direction during sector change. So the current error never goes outside the parabolic boundary as in the case of outer parabolas based sector change technique. So the proposed new technique for sector change eliminates the 5th and 7th harmonic components from the applied voltage and thus eliminates the 5th and 7th harmonic currents in the motor. So there will be no introduction of 6th harmonic torque pulsations in the motor.
Using the proposed scheme for sector change and parabolic boundary for current error space phasor, simulation study was carried out using Matlab-Simulink. Simulation study showed that the switching frequency variations in a fundamental cycle and over the entire speed range of the machine upto six step mode operation is similar to that of a VC-SVPWM based VSI. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency is completely implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented in this thesis.
This thesis also proposes a new hysteresis controller which eliminates parabolic boundary and replaces it with a simple online computation of the boundary. In this proposed new hysteresis controller the boundary computed in the present sampling interval is used for identifying next vector to be switched. This thesis gives a detailed mathematical explanation of how the boundary is computed and how it is used for selecting vector to be switched in a sector. It also explains how the sector in which stator voltage vector is present is determined. The most important part of this proposed hysteresis controller is the estimation of stator voltages along alpha and beta axes during active and zero vector periods. Estimation of stator voltages are carried out using current errors along alpha and beta axes and steady state equivalent circuit of induction motor. Using this estimated stator voltages along alpha and beta axes, instantaneous phase voltages are computed and used for finding individual voltage vector switching times. These switching times are used for the computation of hysteresis boundary for individual vectors. So the hysteresis boundary for individual vectors are exactly calculated and used for vector change detection, making phase voltage harmonic spectrum exactly similar to that of constant switching frequency VC SVPWM inverter. Sector change detection is very simple, since we have the estimated stator voltages along alpha and beta axes to give exact position of stator voltage vector.
Simulation study to verify the steady state as well as transient performance of the proposed controller based VSI fed IM drive is carried out using Simulink tool box of Matlab Simulation Software. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency profile for phase voltage is implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the proposed hysteresis controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented for different operating conditions.
|
100 |
Vlastnosti asynchronního motoru napájeného z frekvenčního měniče / Induction motor powered from inverterFiala, Petr January 2016 (has links)
This master’s thesis studies additional losses generated in the induction motor powered from inverter. The first chapter was used for literature search and it mentions valuable publications. The second chapter discusses the different types of losses in the induction motor. The third chapter describes other negative effects on motor caused by inverter, the fourth one defines possible measuring methods, which would lead to the quantification of additional losses. The fifth chapter introduces the electromotor tested as well as the measuring instruments used. The last chapter presents pivotal results of the measurement in the testing room.
|
Page generated in 0.0669 seconds