• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 15
  • 14
  • 14
  • 12
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 268
  • 53
  • 53
  • 34
  • 31
  • 29
  • 26
  • 25
  • 25
  • 24
  • 24
  • 24
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Le gaz dans les galaxies spirales de l'univers local : modélisation d'observations radio et étude des lois de formation stellaire dans les galaxies perturbées / The gas of spirals galaxies in the local universe : simulations of radio observations and study of the star formation laws in perturbed galaxies

Nehlig, François 28 September 2015 (has links)
Le milieu interstellaire (MIS) des galaxies spirales joue un rôle primordial dans l'évolution des galaxies. Nous nous sommes attachés au cours de cette thèse à caractériser le lien existant entre le MIS dans les galaxies spirales et l'efficacité de la formation stellaire. Dans une première partie, nous étudions la morphologie du disque de gaz atomique de la galaxie spirale fortement inclinée NGC 2683, à l'aide d'un modèle de déprojection de cubes de données radio. Cette étude permet notamment de rendre compte de l'histoire d'accrétion de gaz dans ce système. Dans une seconde partie, nous nous intéressons aux conséquences de la compression du MIS qui peut avoir lieu dans des galaxies situées dans des environnements denses. Notre approche fait usage à la fois de données multilongueur d'onde de galaxies subissant la compression de leur MIS (avec notamment de nouvelles observations millimétriques), de simulations dynamiques de ces galaxies ainsi que d'un modèle analytique donnant accès à la physique aux petites échelles. Notre thèse montre la complémentarité de l'utilisation d'observations, de la modélisation de ces observations et de simulations dynamiques dans l'étude du MIS des galaxies spirales. / The interstellar medium (ISM) of spiral galaxies plays a key role in galaxy evolution. Throughout this thesis we characterized the link between the ISM of spiral galaxies and the star formation efficiency. In a first part, we studied the atomic gas distribution of the highly inclined spiral galaxy NGC 2683, with a deprojection model of radio data cubes. This study gives insight on the gas accretion history in this galaxy. In a second part of this work, we examined the compression effects of the ISM, which occurs in galaxies located in dense environment. Our approach makes use of both a multiwavelength data set of galaxies enduring ISM compression (including new millimeter observations), and dynamical simulations of these galaxies combined with an analytical model which gives access to small scale physics. Our thesis shows the complementarity of high quality observations together with modelisation of these observations and dynamical simulations in the study of the ISM in spiral galaxies.
152

Molecular gas properties of a lensed star-forming galaxy at z ~ 3.6: a case study

Dessauges-Zavadsky, M., Zamojski, M., Rujopakarn, W., Richard, J., Sklias, P., Schaerer, D., Combes, F., Ebeling, H., Rawle, T. D., Egami, E., Boone, F., Clément, B., Kneib, J.-P., Nyland, K., Walth, G. 14 September 2017 (has links)
We report on the galaxy MACSJ0032-arc at z(CO) = 3.6314 discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters, and strongly lensed by the cluster MACSJ0032.1+1808. The successful detections of its rest-frame ultraviolet (UV), optical, far-infrared (FIR), millimeter, and radio continua, and of its CO emission enable us to characterize, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a compact star-forming galaxy with a size smaller than 2.5 kpc, a fairly low stellar mass of 4.8(-1.0)(+0.5) x 10(9) M circle dot, and a moderate IR luminosity of 4.8(-0.6)(+1.2) x 10(11) L circle dot. By combining the stretching effect of the lens with the high angular resolution imaging of the CO(10) line emission and the radio continuum at 5 GHz, we find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is undetected at rest-frame UV wavelengths because of severe obscuration by dust, but is seen through the thermal FIR dust emission and the radio synchrotron radiation. The observed CO(43) and CO(65) lines demonstrate that high-J transitions, at least up to J = 6, remain excited in this galaxy, whose CO spectral line energy distribution resembles that of high-redshift submm galaxies, even though the IR luminosity of MACSJ0032-arc is ten times lower. This high CO excitation is possibly due to the compactness of the galaxy. We find evidence that this high CO excitation has to be considered in the balance when estimating the CO-to-H-2 conversion factor. Indeed, the respective CO-to-H-2 conversion factors as derived from the correlation with metallicity and the FIR dust continuum can only be reconciled if excitation is accounted for. The inferred depletion time of the molecular gas in MACSJ0032-arc supports the decrease in the gas depletion timescale of galaxies with redshift, although to a lesser degree than predicted by galaxy evolution models. Instead, the measured molecular gas fraction as high as 6079% in MACSJ0032-arc favors the continued increase in the gas fraction of galaxies with redshift as expected, despite the plateau observed between z similar to 1.5 and z similar to 2.5.
153

Planck’s dusty GEMS

Cañameras, R., Nesvadba, N., Kneissl, R., Frye, B., Gavazzi, R., Koenig, S., Le Floc’h, E., Limousin, M., Oteo, I., Scott, D. 23 August 2017 (has links)
We present an analysis of high-resolution ALMA interferometry of CO(4-3) line emission and dust continuum in the "Ruby" (PLCK_G244.8+54.9), a bright, gravitationally lensed galaxy at z = 3.0 discovered with the Planck all-sky survey. The Ruby is the brightest of Planck's dusty GEMS, a sample of 11 of the brightest gravitationally lensed high-redshift galaxies on the extragalactic sub-mm sky. We resolve the high-surface-brightness continuum and CO line emission of the Ruby in several extended clumps along a partial, nearly circular Einstein ring with 1.4 '' diameter around a massive galaxy at z = 1.5. Local star-formation intensities are up to 2000 M-circle dot yr(-1) kpc(-2), amongst the highest observed at high redshift, and clearly in the range of maximal starbursts. Gas-mass surface densities are a few x10(4) M-circle dot pc(-2). The Ruby lies at, and in part even above, the starburst sequence in the Schmidt-Kennicutt diagram, and at the limit expected for star formation that is self-regulated through the kinetic energy injection from radiation pressure, stellar winds, and supernovae. We show that these processes can also inject sufficient kinetic energy and momentum into the gas to explain the turbulent line widths, which are consistent with marginally gravitationally bound molecular clouds embedded in a critically Toomre-stable disk. The star-formation efficiency is in the range 1-10% per free-fall time, consistent with the notion that the pressure balance that sets the local star-formation law in the Milky Way may well be universal out to the highest star-formation intensities. AGN feedback is not necessary to regulate the star formation in the Ruby, in agreement with the absence of a bright AGN component in the infrared and radio regimes.
154

Locating the intense interstellar scattering towards the inner Galaxy

Dexter, J., Deller, A., Bower, G. C., Demorest, P., Kramer, M., Stappers, B.W., Lyne, A. G., Kerr, M., Spitler, L. G., Psaltis, D., Johnson, M., Narayan, R. 11 1900 (has links)
We use VLBA+VLA observations to measure the sizes of the scatter-broadened images of six of the most heavily scattered known pulsars: three within the Galactic Centre (GC) and three elsewhere in the inner Galactic plane (Delta l < 20 degrees). By combining the measured sizes with temporal pulse broadening data from the literature and using the thin-screen approximation, we locate the scattering medium along the line of sight to these six pulsars. At least two scattering screens are needed to explain the observations of the GC sample. We show that the screen inferred by previous observations of SGR J1745-2900 and Sgr A*, which must be located far from the GC, falls off in strength on scales less than or similar to 0 degrees.2. A second scattering component closer to (Delta < 2 kpc) or even (tentatively) within (Delta < 700 pc) the GC produces most or all of the temporal broadening observed in the other GC pulsars. Outside the GC, the scattering locations for all three pulsars are similar or equal to 2 kpc from Earth, consistent with the distance of the Carina-Sagittarius or Scutum spiral arm. For each object the 3D scattering origin coincides with a known H II region (and in one case also a supernova remnant), suggesting that such objects preferentially cause the intense interstellar scattering seen towards the Galactic plane. We show that the H II regions should contribute greater than or similar to 25 per cent of the total dispersion measure (DM) towards these pulsars, and calculate reduced DM distances. Those distances for other pulsars lying behind H II regions may be similarly overestimated.
155

The 12C/ 13C Ratio in Sgr B2(N): Constraints for Galactic Chemical Evolution and Isotopic Chemistry

Halfen, D. T., Woolf, N. J., Ziurys, L. M. 22 August 2017 (has links)
A study has been conducted of 12C/13C ratios in five complex molecules in the Galactic center. H2CS, CH3CCH, NH2CHO, CH2CHCN, and CH3CH2CN and their 13C-substituted species have been observed in numerous transitions at 1, 2, and 3 mm, acquired in a spectral-line survey of Sgr B2(N), conducted with the telescopes of the Arizona Radio Observatory (ARO). Between 22 and 54 individual, unblended lines for the 12C species and 2–54 for 13C-substituted analogs were modeled in a global radiative transfer analysis. All five molecules were found to consistently exhibit two velocity components near VLSR ∼ 64 and 73 km s−1, with column densities ranging from Ntot ∼ 3 × 1014 − 4 × 1017 cm−2 and ∼2 × 1013 − 1 × 1017 cm−2 for the 12C and 13C species, respectively. Based on 14 different isotopic combinations, ratios were obtained in the range 12C/13C = 15 ± 5 to 33 ± 13, with an average value of 24 ± 7, based on comparison of column densities. These measurements better anchor the 12C/13C ratio at the Galactic center, and suggest a slightly revised isotope gradient of 12C/13C = 5.21(0.52) DGC + 22.6(3.3). As indicated by the column densities, no preferential 13C enrichment was found on the differing carbon sites of CH3CCH, CH2CHCN, and CH3CH2CN. Because of the elevated temperatures in Sgr B2(N), 13C isotopic substitution is effectively “scrambled,” diminishing chemical fractionation effects. The resulting ratios thus reflect stellar nucleosynthesis and Galactic chemical evolution, as is likely the case for most warm clouds.
156

A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

Privon, G. C., Stierwalt, S., Patton, D. R., Besla, G., Pearson, S., Putman, M., Johnson, K. E., Kallivayalil, N., Liss, S. 01 September 2017 (has links)
Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The Ha emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M-circle dot yr(-1), which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of > 50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.
157

Molecular gas during the post-starburst phase: low gas fractions in green-valley Seyfert post-starburst galaxies

Yesuf, Hassen M., French, K. Decker, Faber, S. M., Koo, David C. 08 1900 (has links)
Post-starbursts (PSBs) are candidate for rapidly transitioning from starbursting to quiescent galaxies. We study the molecular gas evolution of PSBs at z similar to 0.03-0.2. We undertook new CO (2-1) observations of 22 Seyfert PSB candidates using the Arizona Radio Observatory Submillimeter Telescope. This sample complements previous samples of PSBs by including green-valley PSBs with Seyfert-like emission, allowing us to analyse for the first time the molecular gas properties of 116 PSBs with a variety of AGN properties. The distribution of molecular gas to stellar mass fractions in PSBs is significantly different from normal star-forming galaxies in the CO Legacy Database (COLD) GASS survey. The combined samples of PSBs with Seyfert-like emission line ratios have a gas fraction distribution that is even more significantly different and is broader (similar to 0.03-0.3). Most of them have lower gas fractions than normal star-forming galaxies. We find a highly significant correlation between the WISE 12 and 4.6 mu m flux ratios and molecular gas fractions in both PSBs and normal galaxies. We detect molecular gas in 27 per cent of our Seyfert PSBs. Taking into account the upper limits, the mean and the dispersion of the distribution of the gas fraction in our Seyfert PSB sample are much smaller (mu = 0.025, sigma = 0.018) than previous samples of Seyfert PSBs or PSBs in general (mu similar to 0.1-0.2, sigma similar to 0.1-0.2).
158

State of the gas in intense lensed starbursts

George, Richard David January 2015 (has links)
The most intensely star-forming galaxies lie at z ∼ 2 and are thought to be the progenitors of the most massive galaxies today, yet study of this important population has been hampered by vast quantities of dust, making them almost invisible in the optical and ultraviolet (UV) regimes, and by the low sensitivity and angular resolution of many infrared (IR) facilities. Chapter 2 describes the use of the flux and angular extent boost provided by strong gravitational lensing in the detailed study of individual high-redshift dusty star-forming galaxies (DSFGs). The low number density of such systems has been overcome by recent wide area far-infrared (FIR)–mm surveys, and a sample of candidate systems which are bright enough to study with single-dish FIR telescopes are assembled from these surveys. The chapter further describes spectra of these galaxies obtained using the the Spectral and Photometric Imaging REceiver (SPIRE; Griffin et al. 2010) Fourier transform spectrometer (FTS) on board the Herschel Space Observatory (Pilbratt et al. 2010), exploiting the increased flux densities to search for FIR atomic and ionic spectral lines: important coolants of warm gas surrounding star-formation regions. Chapter 3 describes the first “blind” redshift obtained using Herschel, via the detection of [C ii] 158 μm in one of our spectra. Confirmation of this redshift was provided by detection of CO lines with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Plateau de Bure Interferometer (PdBI), and along with multi-wavelength photometric follow-up, allowed a characterisation of the galaxy, indicating both a merger-driven starburst and an active galactic nucleus (AGN) within the system. Chapter 4 describes the first detection of a massive outflow of molecular gas at high-redshift. Stacking five repeat spectra of the Cosmic Eyelash, one of the best-studied strongly lensed DSFGs, one of the massive star-forming clumps is shown to drive this outflow, albeit likely at a velocity lower than that required to become unbound from the hosting gravitational potential well. Chapter 5 describes line measurements and spectral energy distribution (SED) fitting from the full set of spectra and Herschel PACS mini scan maps. The spectra are stacked to search for faint lines, and compared to a detailed interstellar medium (ISM) model to determine average physical properties of the star-forming gas. Photodissociation region (PDR) properties are found to be similar to those derived using other models, however a cosmic ray ionisation rate of 103 times that of the Milky Way, expected in galaxies of this type cannot reproduce the observed line ratios, in particular the low [O i] 63 μm flux. Chapter 6 finally describes the conclusions drawn from the work presented in this thesis and how these data and analysis add to our knowledge and interpretation of high-redshift DSFGs.
159

Multiwavelength Characterization of an ACT-selected, Lensed Dusty Star-forming Galaxy at z = 2.64

Roberts-Borsani, G. W., Jiménez-Donaire, M. J., Daprà, M., Alatalo, K., Aretxaga, I., Álvarez-Márquez, J., Baker, A. J., Fujimoto, S., Gallardo, P. A., Gralla, M., Hilton, M., Hughes, J. P., Jiménez, C., Laporte, N., Marriage, T. A., Nati, F., Rivera, J., Sievers, A., Weiß, A., Wilson, G. W., Wollack, E. J., Yun, M. S. 27 July 2017 (has links)
We present CI(2-1) and multi-transition (CO)-C-12 observations of a dusty star-forming galaxy, ACT J2029+0120, which we spectroscopically confirm to lie at z = 2.64. We detect CO(3-2), CO(5-4), CO(7-6), CO(8-7), and CI (2-1) at high significance, tentatively detect HCO+(4-3), and place strong upper limits on the integrated strength of dense gas tracers (HCN(4-3) and CS(7-6)). Multi-transition CO observations and dense gas tracers can provide valuable constraints on the molecular gas content and excitation conditions in high-redshift galaxies. We therefore use this unique data set to construct a CO spectral line energy distribution (SLED) of the source, which is most consistent with that of a ULIRG/Seyfert or QSO host object in the taxonomy of the Herschel Comprehensive ULIRG Emission Survey. We employ RADEX models to fit the peak of the CO SLED, inferring a temperature of T similar to 117 K and n(H2) similar to 10(5) cm(-3), most consistent with a ULIRG/QSO object and the presence of high-density tracers. We also find that the velocity width of the C I line is potentially larger than seen in all CO transitions for this object, and that the L'(Ci(2-1))/L'(CO(3-2)) ratio is also larger than seen in other lensed and unlensed submillimeter galaxies and QSO hosts; if confirmed, this anomaly could be an effect of differential lensing of a shocked molecular outflow.
160

Studies Of Diffuse Ultraviolet Radiation

Karnataki, Abhay 09 1900 (has links) (PDF)
Ever since the first observations of diffuse ultraviolet radiation by Hayakawa et al. (1969) and Lillie & Witt (1976), there has been an effort to understand its distribution and its origin. Unfortunately, because of the difficulty of the observations and the faintness of the background, many of the early observations were conspicuous more by their disagreements than by the light they shed on the topic. The state of the observations and theories before 1990 have been reviewed by Bowyer (1991) and Henry (1991). There has been significant progress in more recent years, particularly in the far ultraviolet (< 1200˚A) where Murthy et al. (1999) and Murthy & Sahnow (2004) have used spectroscopic data from the Voyager and FUSE (Far Ultraviolet Spectroscopic Explorer) spacecraft, respectively, to trace the radiation field over many different locations in the sky. There have also been a number of observations at longer wavelengths, most recently by the SPEAR instrument (Ryu et al. 2008, and references therein), but no systematic study of the UV background. The Galaxy Evolution Explorer (GALEX) offers us the opportunity to extend coverage of the diffuse background to a significant fraction of the sky with a sensitivity of better than 100 photons cm−2 sr−1 s−1 ˚A−1 . In this work, we will report on one such observation, that of the nebulosity observed near M82 by Sandage (1976). These GALEX observations are the first to probe the diffuse UV background at a spatial resolution comparable to other surveys of dust emission, notably the IR. We obtain a quantitative estimate of the Airglow, the Zodiacal Light and the Extragalactic Background Radiation. We have modelled the data with our monte carlo scattering simulation program, and inferred an estimate of albedo and scattering phase function parameter of the dust in Sandage region. In this thesis the methods and results of these deductions are explained in detail.

Page generated in 0.2371 seconds